

COURSEUNIT (MODULE) DESCRIPTION

Course unit (module) title Code Discrete Structures

Annotation In this course, fundamental knowledge on the mathematical logic, sets, relations, combinatorics, graph theory, binary relations and propositional logic are given.

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. Karolina Kanišauskienė	Šiauliai Academy
Other(s):	

Study cycle	Type of the course unit (module)		
First	Compulsory		

Mode of delivery	Semester or period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	1 semester	English

Requisites				
Co-requisites (if relevant):	Additional requirements (if any):			
Course of School Mathematics				

Number of ECTSStudent's workloadcredits allocated(total)		Contact hours	Individual work
5	133	56	77

Purpose of the course unit (module)							
To provide basic knowledge of discrete structures and to develop the ability to apply this knowledge in practice.							
Learning outcomes of the course unit (module) Teaching and learning Assessment methods							
Will be able to define principal discrete structures concepts, to illustrate them by examples and to apply for computer sciences studies.	Formal lectures, exercise classes, problem-based learning, independent study	Control works, Examination					
Will be able to apply discrete structures knowledge to solve practical problems.	of scientific literature						

	Contact hours					Individual work: time and assignments			
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship/work placement	Contact hours, total		Assignments
1. Introduction to mathematical logic The concept of the proposition. Logical operators.	4						4	3	Perception and assimilation of the material,
2. Sets, functions, relations The concept of the set. Kinds of sets. Subsets. Operations on sets. Function (Mapping). Recurrence relations.	4			2			6	6	learning to solve problems, independent study of
3. Combinatorics Basic counting principles. Permutation. Combination. Combinatorial numbers.	3			2	2		7	7	scientific literature
Preparation for control work				_			_	8	
Control work (1)	10			2	2		2 15	14	Densentien and
4. Fundamentals of the graph theory The concept of the graph. Metric characteristics. Matrices of graphs. Graph operations. Fundamental numbers of the graph theory. Trees. Eulerian and Hamiltonian circuits.	10			3	2		15	14	Perception and assimilation of the material, learning to solve problems, independent
5. Binary relations							2	2	study of scientific
Preparation for control work								8	literature
Control work (2)				2			2		
6. Propositional logic Classification of propositions. Equivalent propositions. Laws of propositional logic. Normalization of propositions. Normal forms. Duality.	9			3	4		16	13	Perception and assimilation of the material, learning to solve problems,
Preparation for control work								8	independent study of scientific literature
Control work (3)				2			2		
Preparation for the exam								8	Perception and assimilation of the material.
Total	32			16	8		56	77	

Assessment strategy	Weight, %	Deadline	Assessment criteria
Control work (1)	25	During the semester	Control work consist of 6–7 tasks assessed by 1-2 points each. The system of ten grades is being employed.
Control work (2)	25	During the semester	Control work consist of 6–7 tasks assessed by 1-2 points each. The system of ten grades is being employed.
Control work (3)	25	During the semester	Control work consist of 6–7 tasks assessed by 1-2 points each. The system of ten grades is being employed.
Exam	25	During the exam session	Exam consist of 10 short theoretical questions on graph theory and 10 short theoretical questions on mathematical and propositional logic assessed by 0.5 point each.

Author	Publishing year	Title	Issue of a periodical or volume of a publication; pages	Publishing house or internet site		
	Required reading					
K. H. Rosen	2012	Discrete Mathematics and Its Applications (7 th ed.)		New York.		
Recommended reading						
R. P. Grimaldi	2004	Discrete and Combinatorial Mathematics (5 th ed.)		Boston &c: Pearson.		
O. Levin	2013- 2021	Discrete Mathematics (3 rd ed.)				