

COURSE UNIT DESCRIPTION

Course unit title	Code
Procedural programming	

Annotation

The study subject is intended for the students of the study program Software engineering. During the studies, the stages of program development, the basic constructions of the programming language and data structures are introduced. Learn to create and combine structured and multi-file applications.

Lecturer(s)	Department, Faculty
Coordinating: prof. dr. Sigita Turskienė	Šiauliai Academy
Other: Lect Dr. Dainius Balbonas	

Study cycleType of the course unitFirst cycle studiesCompulsory

Mode of delivery	Semester or period when it is delivered	Language of instruction
Face-to-face	1 semester	Lithuanian/English

Requisites						
Prerequisites: No	Co-requisites mathematics	(if	relevant):	basics	of	discrete

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	133	64	69

Purpose of the course unit: programme competences to be developed	
The subject of procedural programming studies aims to develop analytical thinking by acquiring knowledge	of
procedural programming and initial skills to independently create programs that develop disciplined programm	ing
skille	

Skillo.		
Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Will be able to analyze and systematize the data required to implement frequently used algorithms.	Laboratory works, Literature analysis, Practical tasks, Lectures	Exam (written), Individual homework, Laboratory work defense
Will be able to apply procedural programming knowledge in various areas of software development	Laboratory works, Practical tasks, Lectures, Problem-based learning	Exam (written), Individual homework, Laboratory work defense
Will know the fundamental syntax elements of the C family languages, will be able to learn easily new programming	Laboratory works, Practical tasks, Lectures, Problem-based learning	Exam (written), Individual homework, Laboratory work defense

languages (eg C #, Java, Python, PHP))		
Will be able to create and debug various applications.	Laboratory works, Practical tasks, Lectures	Exam (written), Individual homework, Laboratory work defense
Will be able to plan the time, work independently, will acquire the basic skills of disciplined programming.	Laboratory works, Practical tasks	Exam (written), Individual homework, Laboratory work defense

			Со	ntact		Indi and	and assignments		
Course content: breakdown of the topics		Tutorials	Seminars	Workshops	Laboratory work	Internship/work placement	Contact hours, total	Individual work	Assignments
1. Program development stages. The concept of procedural programming. Programming environment. Preprocessor. Compiler.	3						3	2	Self-study of subject literature, exam (written)
2. Basic elements of programming language. Standard function libraries.	4				4		8	2	Self-study of subject literature, exam (written)
3. Major control and management operators. Conditional and variant sentences. Loop sentences. Iterative calculations.	4				6		10	2	Laboratory work No. 1, Self-study of subject literature, exam (written)
4. Functions and their parameters. Overlay functions. Recursive functions.	4				4		8	4	Laboratory work No. 3, Self-study of subject literature, exam (written)
5. Character string. Data files.	4				4		8	4	Laboratory work No. 5, Self-study of subject literature, exam (written)
6. User-defined data types. Arrays. Structures. Compounds.	4				4		8	4	Laboratory work No. 2, Self-study of subject literature, exam (written)
7. Dynamic memory management. Pointer types. Arithmetic of pointers. Arrays of pointers.	4				6		10	4	Laboratory work No. 4, Self-study of subject literature, exam (written)
8. Memory class specifiers. Visibility and existence of variables. Namespaces.	2				2		4	2	Homework No. 1, Self-study of subject literature, exam (written)
9. Creating multi-files programs. Structured files.	3				2		5	2	Homework No. 1, Self-study of subject literature, exam (written)
10. Exam.								43	Exam (3 h), for prepration (40 h)

Total	32		32	64	69	

Assessment strategy	Weight %	Deadline	Assessment criteria
Laboratory work 1	10	During semester	The student performs a laboratory work task from the loops and conditional sentences themes. The student must specify the problem formulated in the task. Laboratory work is evaluated from 0 to 10 points. Evaluation Criteria: • Implementation of the requirements specified in the task, accurate application of appropriate statements. (70%) • Ability to substantiate the implemented solutions, compare them with possible alternative solutions. (20%) • Evaluate the complexity and problems of the realized situation. (10%) • If laboratory work not performed (0 %)
Laboratory work 2	10	During semester	The student performs a laboratory task according to a more complex algorithm using arrays. The student must specify the problem formulated in the task. Laboratory work is evaluated from 0 to 10 points. Evaluation Criteria: • Implementation of the requirements specified in the task, accurate application of appropriate statements. (70%) • Ability to substantiate the implemented solutions, compare them with possible alternative solutions. (20%) • Evaluate the complexity and problems of the realized situation. (10%) • If laboratory work not performed (0 %)
Laboratory work 3	10	During semester	The student performs a laboratory task - creation of functions. The student must specify the problem formulated in the task. Laboratory work is evaluated from 0 to 10 points. Evaluation Criteria: • Implementation of the requirements specified in the task, accurate application of appropriate statements. (70%) • Ability to substantiate the implemented solutions, compare them with possible alternative solutions. (20%) • Evaluate the complexity and problems of the realized situation. (10%) • If laboratory work not performed (0 %)
Laboratory work 4	10	During semester	The student performs a laboratory task using dynamic memory and pointers. The student must specify the problem formulated in the task. Laboratory work is evaluated from 0 to 10 points. Evaluation Criteria: • Implementation of the requirements specified in the task, accurate application of appropriate statements. (70%) • Ability to substantiate the implemented solutions, compare them with possible alternative solutions. (20%) • Evaluate the complexity and problems of the realized situation. (10%) • If laboratory work not performed (0 %)
Laboratory work 5	10	During semester	The student performs a laboratory task using character sequences. The student must specify the problem formulated in the task. Laboratory work is evaluated from 0 to 10 points. Evaluation Criteria: • Implementation of the requirements specified in the task, accurate application of appropriate statements. (70%) • Ability to substantiate the implemented solutions, compare them with possible alternative solutions. (20%) • Evaluate the complexity and problems of the realized situation. (10%) • If laboratory work not performed (0 %)
Homework 1	10	During semester	The student individually performs a homework assignment from the development of multi-file programs The student must specify the problem formulated in the task. Homework is evaluated from 0 to 10 points. Evaluation Criteria

			 Implementation of the requirements specified in the task, accurate application of appropriate statements. (70%) Ability to substantiate the implemented solutions, compare them with possible alternative solutions. (20%) Evaluate the complexity and problems of the realized situation. (10%) If laboratory work not performed (0 %)
Exam	40	During exam session	 The exam covers the knowledge and skills developed in all course topics. The exam test consists of 10 open questions and / or tasks. Each question tests the understanding of the concepts, data types or language constructions examined, the application of the material in an imaginary practical situation. Each task is evaluated with 1 point. Final evaluation: Excellent and very good subject knowledge and skills. (10-9 correct answers) Good knowledge and skills, there may be minor mistakes. (8 correct answers) Average knowledge and skills, there are mistakes. (7 correct answers) Knowledge and skills are below average, there are significant mistakes. (6 correct answers) Knowledge and skills still meet the minimum requirements. Lots of mistakes. Level of knowledge and understanding. (5 correct answers). Minimum requirements are not met. 0-4 correct answers.

Anthony	Derik lie him m	T :41.	la ave af a	Dubliching bourse
Author	Publishing	l itie	Issue of a	Publishing house
	year		periodical or	or internet site
			volume of a	
			publication; pages	
Required reading				
Brian W.	2015	The C Programming Language		Pearson Prentice
Kernighan, Dennis				Hall
M. Ritchie				
S. Qualline	2010	Practical C++ programming		O'Reilly,
P. Deitel, H. Deitel	2014			Pearson Prentice
		C++ now to program		Hall
Recommended reading				
C. Hortrsman	2009	C++ for everyone		Wiley
Andrew Koenig	2006	Accelerated C++: Practical		Addison-Wesley
_		Programming by Example		
E. Bruce, A. Chuck	2004	Thinking in C++ Vol.2		Pearson Prentice
		-		Hall
		Tutorials in internet		https://www.cpluspl
				<u>us.com/</u>
				https://www.w3sch
				ools.com/CPP/defa
				<u>ult.asp</u>
				https://www.learncp
				<u>p.com/</u>
				https://www.geeksf
				orgeeks.org/c-plus-
				plus/