

## COURSE UNIT (MODULE) DESCRIPTION

| Course unit (module) title | Code |
|----------------------------|------|
| Systemic programming       |      |

| Academic staff                         | Core academic unit(s) |
|----------------------------------------|-----------------------|
| Coordinating: dr. Liudvikas Kaklauskas | Šiaulių akademija     |
| Other:                                 |                       |

| Study cycle      | Type of the course unit |  |  |
|------------------|-------------------------|--|--|
| Bachelor studies | Mandatory               |  |  |

| Mode of delivery | Semester or period<br>when it is delivered | Language of instruction |  |
|------------------|--------------------------------------------|-------------------------|--|
| Auditorium       | 5 semester                                 | English                 |  |

| Requirements for the student                        |                              |  |  |  |  |  |
|-----------------------------------------------------|------------------------------|--|--|--|--|--|
| Prerequisites: Fundamentals of programming,         | Co-requisites (if relevant): |  |  |  |  |  |
| structured programming, object-oriented programming |                              |  |  |  |  |  |
|                                                     |                              |  |  |  |  |  |

| Number of ECTS credits<br>allocated | Student's workload<br>(total) | Contact hours | Individual work |
|-------------------------------------|-------------------------------|---------------|-----------------|
| 5                                   | 133                           | 48            | 85              |

| Purpose of the course unit                                                                                                                                                                                     |                                                                                                          |                                          |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|
| To provide knowledge and learn how to apply systematic programming methods to create programs                                                                                                                  |                                                                                                          |                                          |  |  |  |  |  |  |
| Learning outcomes of the course<br>unit                                                                                                                                                                        | Teaching and learning methods                                                                            | Assessment methods                       |  |  |  |  |  |  |
| BK1.4. Apply knowledge of program<br>systems, creating secure and other<br>relevant criteria-compliant<br>informatics applied solutions to solve<br>relevant problems of professional<br>activity.             | Theoretical lecture, laboratory work,<br>defense of laboratory work, search of<br>scientific literature. | Defense of laboratory work, test (exam). |  |  |  |  |  |  |
| BK3.3. Demonstrate creativity in solving tasks and problems of professional activity.                                                                                                                          | Theoretical lecture, laboratory work, defense of laboratory work.                                        | Defense of laboratory work, test (exam). |  |  |  |  |  |  |
| DK2.3. To analyze the data,<br>information and solutions needed to<br>solve the actual problem of the<br>professional activity of program<br>systems using effective methods<br>according to various criteria. | Theoretical lecture, laboratory work, defense of laboratory work.                                        | Defense of laboratory work, test (exam). |  |  |  |  |  |  |
| DK3.6To implement a program<br>system product or service to solve the<br>actual problem of professional<br>activity according to the functional<br>and non-functional requirements for<br>the program system.  | Theoretical lecture, laboratory work,<br>defense of laboratory work, remote<br>consultations.            | Defense of laboratory work, test (exam). |  |  |  |  |  |  |

|                                                                                                      |          | Contact hours |          |           |                 | Ind        | Individual work: time and<br>assignments |                 |                                                                                     |
|------------------------------------------------------------------------------------------------------|----------|---------------|----------|-----------|-----------------|------------|------------------------------------------|-----------------|-------------------------------------------------------------------------------------|
| Content                                                                                              | Lectures | Tutorials     | Seminars | Workshops | Laboratory work | Internship | Contact hours, total                     | Individual work | Tasks for individual<br>work                                                        |
| 1. Analysis of microprocessors and computer resources.                                               | 2        |               |          |           | 2               |            | 4                                        | 6               | Analysis of scientific<br>literature on computer<br>structure and its<br>management |
| 2. Software model of processor architecture.                                                         | 2        |               |          |           | 2               |            | 4                                        | 9               | Preparation and defense of laboratory works.                                        |
| 3. Writing the program with assembler, data description.                                             | 2        |               |          |           | 2               |            | 4                                        | 8               | Preparation and defense of laboratory works.                                        |
| 4. Management of macro processors, loaders, compilers.                                               | 2        |               |          |           | 2               |            | 4                                        | 9               | Preparation and defense of laboratory works.                                        |
| 5. Use of operating system resources.                                                                | 2        |               |          |           | 3               |            | 5                                        | 9               | Preparation and defense of laboratory works.                                        |
| 6. Programmatic management of files and processes.                                                   | 2        |               |          |           | 3               |            | 5                                        | 10              | Preparation and defense of laboratory works.                                        |
| 7. PC hardware management.                                                                           | 3        |               |          |           | 2               |            | 5                                        | 9               | Preparation and defense of laboratory works.                                        |
| 8. Development of the simplest<br>program for the operating system of 32<br>and 64-bit architecture. | 3        |               |          |           | 2               |            | 5                                        | 8               | Preparation and defense of laboratory works.                                        |
| 9. Modular program, implementation of data exchange.                                                 | 3        |               |          |           | 3               |            | 6                                        | 10              | Preparation and defense of laboratory works.                                        |
| 10. Implementation of interaction<br>between assembler and high-level<br>programming languages.      | 3        |               |          |           | 3               |            | 6                                        | 9               | Preparation and defense of laboratory works.                                        |
| Total:                                                                                               | 24       |               |          |           | 24              |            | 48                                       | 85              |                                                                                     |

| Assessment strategy               | Weight % | Deadline                                  | Assessment criteria                                                                                                                                                                                                       |
|-----------------------------------|----------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defense of laboratory work<br>(G) | 50%      | At a fixed time<br>during the<br>semester | The completed laboratory works and their defense are<br>evaluated (the evaluations of each laboratory work and<br>its defense are averaged and multiplied by a weighting<br>factor of 5%, a total of 10 laboratory works) |
| Exam (E)                          | 50%      | At a fixed time<br>during the<br>session  | A test consisting of closed and open type questions is held                                                                                                                                                               |

| Author (-s)             | Publishi<br>ng year | Title                                                                | Issue of a periodical<br>or volume of a<br>publication | Publishing house or<br>web link |
|-------------------------|---------------------|----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|
|                         |                     | Required reading                                                     |                                                        |                                 |
| Johnson M. Hart.        | 2010                | Windows System<br>Programming, fourth<br>edition.                    |                                                        | Pearson Education               |
| Love R.                 | 2013                | LINUX system programming.                                            | O'Reilly Media                                         |                                 |
| Anthony R. J.           | 2015                | Systems ProgrammingIDesigning andDeveloping DistributedApplications. |                                                        | Elsevier Inc.                   |
|                         |                     | Recommended readi                                                    | ng                                                     |                                 |
| Sanchez J., M/P/Canton. | 2015                | Microcontrollers<br>HIGH-                                            |                                                        | CRC Press.                      |

|                |      | PERFORMANCE<br>SYSTEMS AND<br>PROGRAMMING.          |                       |
|----------------|------|-----------------------------------------------------|-----------------------|
| Tanenbaum A.S. | 2007 | Operating systems.<br>Design and<br>implementation. | New Jersey, 2007.     |
| Kerrisk M.     | 2010 | The Linux programming interface.                    | No Starch Press, Inc. |