

COURSE UNIT DESCRIPTION

Course unit title	Code
Computer Architecture	

Annotation

Computer components and elements, architectural design, their development. Digital logic, data coding and representation at the machine level. Processor, arithmetic, logic and control modules. Instructions and their cycles. Command formats. Interrupts. Memory systems, their hierarchy. Random access memory. Cache memory and architectural design, parameters. Virtual memory. External storage devices and their principles of operation. Input and output devices and their control. Communication and multimedia equipment. Parallel processes. Increasing productivity. Assembler commands, directives, operands and their addressing.

Lecturer(s)	Department, Faculty
Coordinating: Lect. Dr. Dainius Balbonas	Šiauliai Academy
Other: Lect.	

Study cycle	Type of the course unit		
First cycle studies	Compulsory		

Mode of delivery	Semester or period when it is delivered	Language of instruction
Face-to-face	1 semester	English

Requisites					
Prerequisites: No	Co-requisites (if relevant): No				

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work	
5	133	56	77	

Purpose of the course unit: programme competences to be developedTo know the architecture of modern computer equipment, computer classes, architectural, logical and
physical design, memory hierarchy, CPU technologies and architecture, instructions and
microarchitecture, modern computer equipment, input-output systems, single-crystal computer
architecture, computer hardware peripheral structure. Be able to evaluate and optimally select the
equipment of a modern computer business management system.Learning outcomes of the courseTeaching and learning methodsAssessment methods

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Consistently explain the basic	Theoretical lecture, laboratory	Laboratory work defense, test
facts, concepts, theories, and	work, search of scientific	(exam)
mathematical methods related to	literature.	
computer operation, computer		
hardware and software, its		
features and practical		
applications, computer		

communication, and applied solutions related to important historical, current time, and potential developments in computer science and future trends.							
Apply knowledge of software systems in developing IT application that meet safety and other actual criteria to solve relevant professional problems.	Theoretical work.	lecture,	laboratory	Laboratory (exam)	work	defense,	test
To describe the problems of professional activity in the field of study of program systems at different levels of abstraction.	Theoretical work.	lecture,	laboratory	Laboratory (exam)	work	defense,	test
Using effective methods and various criteria to analyze the data, information and solutions necessary for solving the actual problem of professional activity of program systems	Theoretical work, remote		•	Laboratory (exam)	work	defense,	test
Methodologically prepare the specification, design, and other documentation required to create, install, develop, use, and administer an application systems product or service	Theoretical work.	lecture,	laboratory	Laboratory (exam)	work	defense,	test

	Contact hours						vidual work: time assignments		
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship/work placement	Contact hours, total	Individual work	Assignments
1. Architecture of modern computer equipment. Domain-specific architectures. Architectural, logical and physical design. Computer architecture, basic concepts, components, their functionality and relationships, buses. Computer classes: peripherals / mobile devices, laptop / desktop computer, server, server clusters, Internet of Things, embedded systems.	2				4		6	6	Analysis of scientific literature on computer architecture and networks
2. Memory chips NAND, 3D NAND, memory interfaces and protocols, memory hierarchy, SLC, MLC, TLC technologies, virtual memory, paging, segmentation, memory protection, virtualization and virtual machines. JEDEC memory modules: NVDIMM-N, NVDIMM-F, NVDIMM-P.	4				4		8	10	Preparation and defense of laboratory works

 Internal, cache and external memory, their logical structure, characteristics, architecture. Disk arrays. 3. Central processing unit, technologies, architecture, cores, ambiguity, process parallelism. Concept of instructions, architecture: CISC, RISC, VLIW, EPIC. Microarchitecture: interrupts, registers, operands, addressing, ALU, FPU, pipelines, threads, timers, AD converters. Single crystal computer architecture. BIOS. GPU architecture 	4	4	8	10	Preparation and defense of laboratory works
4. Input-output (I / O) system architecture. Programmable Interrupt-Based (IRQ) and Direct Memory Access (DMA) I / O devices. Buses, their structure, functions. Peripherals, interfaces, communication, control, buffering.	4	4	8	9	Preparation and defense of laboratory works
5. Structure, functions, parameters, installation, testing, debugging and integration of computer peripherals into the business management system, communication solutions with other hardware.	2	4	6	9	Preparation and defense of laboratory works
6. Architecture, components, features, debugging and integration of smart, futuristic and non-standard computer hardware.	2	4	6	9	Preparation and defense of laboratory works
7. FORTH, FPGA machines. Servers, clusters and other computer equipment.	2	2	4	6	Preparation and defense of laboratory works
8. Assembler instructions, directives, operands, addressing.	4	6	10	18	Preparation and defense of laboratory works
Total	24	32	56	77	

Assessment strategy	Weight %	Deadline	Assessment criteria
Defense of laboratory works (G)	50%	Time during the semester	Evaluation of performed laboratory works and their defense (evaluations of each laboratory work and its defense are averaged and multiplied by 6.25% weighting factor, a total of 8 laboratory works)
Exam (E)	50%	Time during the session	A test consisting of closed and open questions

Author	Publishing year	Title	Issue of a periodical or volume of a publicatio n; pages	Publishing ho00use or internet site
--------	--------------------	-------	---	-------------------------------------

Required reading				
John L. Henness y, David A. Patterso n	2020	Computer Architecture: A Quantitative Approach.		Morgan Kaufmann publishers
Ata Elahi	2018	Computer Systems: Digital Design, Fundamentals of Computer Architecture and Assembly Language.		Springer International Publishing AG
Blanche	2013	Computer		Iste; Wiley.
t, G., &		architecture (electronic		
Dupouy , B.		resource)		
Recommended reading				
		Various tutorials and YouTube channels		https://www.studytonight.com/computer-architecture/ https://www.learncomputerscienceonline.com/compute r-organization-and-architecture/ https://tutorialsinhand.com/tutorials/computer- organization-and-architecture-coa-tutorial/computer- fundamentals/computer-organization-architecture-coa- tutorial.aspx
				https://www.youtube.com/hashtag/computerorganizatio nandarchitecture
		Hardware analysis and recognized international tests		http://www.tomshardware.com/ http://www.pcworld.com/ http://www.xbitlabs.com/ https://www.anandtech.com/ https://www.pcmag.com/