

COURSE UNIT (MODULE) DESCRIPTION

		init (module) title			Code		
Recognition a	nd Proces	ssing Methods of I	Digital Objects				
	• 4 66			1 1	• ••()		
Acaden			C		emic unit(s)		
Coordinating: Assoc. prof.	dr. Ginta	utas Daunys	Šiauliai Academy				
Other:							
Study	cycle		Т	ype of the	e course unit		
Fi	rst			Man	datory		
			or period s delivered	La	Language of instruction		
Face-to-face or blended learn	ing	7 ser	mester English				
Prerequisites:		Requ	usites Co-requisites (if r	elevent)•			
Artificial Intelligence			Co-requisites (if r	cicvant).			
			I				
Number of ECTS credits allocated	Stude	ent's workload (total)	Contact hours		Individual work		
5		133	56		77		
			he course unit				
To develop the abilities to ap							
Learning outcomes of the		and learning methods		Assessment methods			
e e					ritten exam, assignments		
rocessing algorithms. Python progra			aming.	(la	boratory works).		

Louing outcomes of the course unit		
Knowledge video and audio signal	Traditional and interactive lectures,	Written exam, assignments
processing algorithms.	Python programing.	(laboratory works).
Ability to analyze the eligibility of	Interactive lectures, Python	Assignments (laboratory
algorithms to perform specific robotics	programing.	works).
tasks.		
Ability to create and train signal	Interactive lectures, Python	Assignments (laboratory
processing neural networks.	programing.	works).
Ability to prepare a specification for a	Interactive lectures, Python	Written exam, assignments
robotics product that processes video and	programing.	(laboratory works).
audio information		
Ability individually study newest	Individual reading and analysis,	Written exam, assignments
information about image and sound	Python programing.	(laboratory works).
processing algorithms		

		Contact hours				Individual work: time and assignments			
Content	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
1. Image formation. Image sensor. Digital camera.	4				0		4	4	Individual reading.
2. Image processing algorithms.	4				4		8	6	Writing programs individually using Python.
3. Image classification neual networks.	4				8		12	12	Individual reading. Writing programs individually using Python.
4. Object Detection. YOLO algorithm.	4				4		8	8	Writing programs individually using Python.
5. Semantic Segmentation. Visual Simultaneous Localization and Mapping (Visual SLAM).	4				4		8	8	Writing programs individually using Python.
6. Sound features extraction.	4				4		8	4	Writing programs individually using Python.
7. Speech recognition ans synthesis.	4				4		8	12	Writing programs individually using Python.
8. Preparation for exam.	0				0		0	23	Individual reading.
Total	28				28		56	77	

Assessment strategy	Weight %	Deadline	Assessment criteria
1. Programming	5 %	Week 4	Assessment by grade in 10 point system. Grade depends on:
assignments for topics 2			efficiency of code, completeness of performed tests, clarity
2. Programming	15%	Week 6	of description and quality of conclusions. All assignments
assignments for topics 3			are obligatory. The cumulative score is calculated only
3. Programming	5%	Week 8	when all interim assignments have been evaluated.
assignments for topics 4			
4. Programming	10 %	Week10	
assignments for topic 5			
5. Programming	5 %	Week12	
assignments for topics 6			
6. Programming	10 %	Week14	
assignments for topics 7			
7. Exam	50%	During	Test with 10 open-ended questions. The value of each
		Exam	question is 1 point.
		Session	

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link				
	Required reading							
Richard Szeliski	2022	Computer Vision: Algorithms and Applications.		Springer. https://szeliski.org/Book/				

Jinyu Li, Li Deng, Reinhold Haeb- Umbach, Yifan Gong	2015	Robust Automatic Speech Recognition: A Bridge to Practical Applications	O'Reilly
		Recommende	d reading
E.R. Davies, Matthew A.	2021	Advanced Methods and Deep Learning in Computer Vision	Academic Press
Ali Tourani, Hriday Bavle, Jose-Luis Sanchez-Lopez, Holger Voos	2022	Visual SLAM: What are the Current Trends and What to Expect?	https://arxiv.org/pdf/2210.10491.pdf
Ilias Papastratis	2021	Speech Recognition: a review of the different deep learning approaches	https://theaisummer.com/speech- recognition/
Sergios Karagiannakos	2021	Speech synthesis: A review of the best text to speech architectures with Deep Learning	https://theaisummer.com/text-to- speech/