14 April 2021

Prestigious Publisher Springer Nature Published a Book by VU Professor

A renowned science publisher, Springer Nature, has published a monograph by a Vilnius university professor Rimvydas Skyrius from faculty of Economics and business administration, titled “Business Intelligence. A Comprehensive Approach...

Read more

14 April 2021

Arqus Celebrates Its First Arqus Academy Week - a Series of Exchanges and Debates About the Universities of the Future

From 3rd to 7th May 2021, Vilnius University (VU) hosts the Arqus Academy Week 2021, a week full of interesting discussions, lectures, workshops and other events organised by the Arqus...

Read more

13 April 2021

VU Business School Together With CERN is Changing the Traditional Study Model

Artificial intelligence, genetic engineering, electromobiles or quantum computers are the next generation technology innovations the world is focusing on today. They change not only industry, but also the lives of...

Read more

9 April 2021

“Gene Scissors” in COVID-19 Diagnostics: Next Generation Tests Will Deliver the Result in 30 Minutes

With the aggressive spread of Coronavirus around the globe, existing controls have proved to be ineffective. It takes some time to obtain the results of the polymerase chain reaction (PCR)...

Read more

9 April 2021

Arancha González Laya, Minister for Foreign Affairs of the Kingdom of Spain Emphasised the Importance of Gender Equality on a…

During her visit to Vilnius University (VU), Ms Arancha González Laya, Minister for Foreign Affairs, European Union and Cooperation of the Kingdom of Spain, met with the rector of the...

Read more

8 April 2021

At a meeting with Jesuit Priest James Martin – a conversation about working with LGBT people

The Chaplain of Vilnius University (VU) Eugenijus Puzynia SJ and the pastoral care team invite you to a remote meeting with Jesuit priest Fr James Martin from the US. Fr...

Read more

Novozymes Prize won by researchers behind tools for editing the genes of organisms

Virginijus Siksnys 1920The 2017 Novozymes Prize is being awarded to Emmanuelle Charpentier, Director and Scientific Member at the Max Planck Institute for Infection Biology in Berlin, Germany, and Virginijus Siksnys, Professor and Head of the Department of Protein–Nucleic acids Interactions at the Institute of Biotechnology of Vilnius University in Lithuania. 



Emmanuelle Charpentier and Virginijus Siksnys are receiving the Prize for their pioneering research activities, which have been key in developing the CRISPR-Cas9 genetic tool – a type of molecular scissors – that enables researchers to edit and modify the genes of various organisms, including bacteria, mice and even humans. 

Only a few years ago, editing the genes in many organisms was a very complicated and time-consuming task that required re-engineering proteins that could cut and splice at a specific location on the genome. Developing the CRISPR-Cas9 technology has dramatically reduced the time needed for targeting organisms for biotechnological applications, and scientists throughout the world have adopted the new technology. In addition, the system has shown enormous potential, such as treating humans who have specific diseases. The technology can also be used for creating characteristics in crops that make them more robust. 

The Novozymes Prize is awarded to recognize a pioneering research effort or a technological contribution that benefits the development of biotechnology science. This is the first time that two researchers have shared the Prize, which is accompanied by DKK 3 million. The Novo Nordisk Foundation awards the Prize. 

Emmanuelle Charpentier says: 

“I am very honoured to have been selected to receive the 2017 Novozymes Prize. The CRISPR-Cas9 technology is truly transformative for the field of life sciences, offering economical and speedy genetic engineering in cells and organisms of the three domains of life. I would like to thank my team, which has accompanied me in the journey from the discovery of tracrRNA in the human pathogen Streptococcus pyogenes to the deciphering of the dual-RNA Cas9 mechanism and its evolution in bacteria. I am overwhelmed by the broad success of the technology and its multiple applications. I thank the Novo Nordisk Foundation for the generous funds that will help to support my research on the understanding of bacterial infection mechanisms.” 

Emannuelle Charpentier

Virginijus Siksnys says: 

“It is great honour and privilege to receive the 2017 Novozymes Prize. It came as a big surprise. For many years, we have been trying to understand the molecular systems that protect bacteria against invading viruses. I am really pleased that our research aimed at deciphering the CRISPR mechanisms paved the way for developing novel genome editing tools and is being recognized by the Novozymes Prize. It nicely demonstrates that curiosity-driven research aimed at understanding fundamental biological questions can provide groundbreaking applications. The Novozymes Prize will provide a unique opportunity to explore new research avenues.” 

Immune systems of bacteria 

The CRISPR-Cas system was discovered through research into the immune systems of bacteria. Bacteria use this system of editing and storing the gene sequences from invading viruses so that they can recognize and defend themselves against these viruses later. Emmanuelle Charpentier and Virginijus Siksnys have each played a decisive role in clarifying the details of how these systems work and showing how they can be used technologically to precisely edit the genomes in many organisms. This technology preliminarily culminates many years of seeking a more efficient and precise way of changing the genome of living cells.

“The development of the CRISPR technology has suddenly paved the way for rapidly and precisely editing the genomes of all types of organisms, from bacteria to human cells. The CRISPR technology offers fantastic opportunities, including designing cell factories with unprecedented efficiency and precision. This is an obvious biotechnological benefit that has already changed the perspectives related to green technology and the biological production of chemicals and drugs,” says Søren Molin, chair of the Prize Committee. 

“The two Prize winners – Emmanuelle Charpentier and Virginijus Siksnys – have been at the forefront of developing CRISPR technology. Their respective research fields enabled them to leap from several biological discoveries to a major breakthrough with immeasurable consequences for biotechnology and other important fields. They are both obvious recipients of the 2017 Novozymes Prize – five years after their respective pioneering research,” he adds.

About the Novozymes Prize 

The Prize is awarded to recognize a pioneering research effort or a technological contribution that benefits the development of biotechnology science to generate innovative solutions. The Prize is accompanied by DKK 3 million: DKK 2.5 million for the Prize winner’s research and a personal award of DKK 0.5 million. 

The Prize is awarded for a predominantly European contribution. Prize winners must be employed at a public or non-profit research institution in a European country. They can have any nationality. The Novozymes Prize Committee awards the Prize on behalf of the Novo Nordisk Foundation based on nominations received. Anyone may nominate a candidate for the Prize. 

About the Novo Nordisk Foundation 

The Novo Nordisk Foundation is a Danish foundation with corporate interests. The Foundation has two objectives: 1) to provide a stable basis for the commercial and research activities of the companies in the Novo Group; and 2) to support scientific, humanitarian and social purposes. The vision of the Foundation is to contribute significantly to research and development that improves the health and welfare of people. 

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.

More information Ok