

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Algorithm Design and Analysis	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Martynas Sabaliauskas	Vilnius University
Other(s): -	Faculty of Mathematics and Informatics

Study cycle	Type of the course unit (module)			
First	Compulsory			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face or remote	3 rd semester	Lithuanian / English

Requirements for students							
Prerequisites: none	Additional requirements (if any): none						
Knowledge of foundations of Discrete Mathematics and							
Calculus (or course in Higher Mathematics), ability to write							
program codes.							

Course (module) volume in credits	Total student's workload	Contact hours	Individual work
5 ECTS	125	48	77

Purpose of the course unit (module): programme competences to be developed							
Purpose of the course unit – to develop student's ability to design efficient algorithms for real world discrete problems as well							
as to estimate the complexity of algorithms and problems.							
Learning outcomes of the course unit (module) Teaching and learning methods Assessment methods							
Analyze algorithms and estimate their complexity.	Lecture.	Homeworks (written).					
Analyze complexity of real world problems.	Case study.	Programming project (program					
Design efficient algorithms in practise.	code, experiments, typed report						
Distinguish between tractable and intractable	Individual reading.	and presentation).					
problems.	Exam (written).						

		Contact hours							Self-study work: time and assignments	
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments	
1. Introduction to algorithm analysis. Algorithms and their properties. Sorting Algorithms. Measuring complexity of algorithms and problems. Counting techniques useful in algorithm analysis. Growth of functions. Upper and lower complexity bounds for sorting.	4			8			12	12	Individual reading, problem solving, case study.	
2. Combinatorial objects, their properties and their presentation by different data structures. Integers, sets, sequences, trees and graphs.	2			4			6	6		
3. Basic techniques for the design and analysis of efficient algorithms: divide-and-conquer, dynamic programming, backtracking, branch-and-bound,	4			8			12	12		

greedy and heuristic algorithms. Analysis of Matrix							
Multiplication, Knapsack and Travelling Salesman problems.							
4. Main graph algorithms and their analysis. Depth- first search and Breadth-first search. Minimum Spanning Tree problem. Algorithms of Prim and Kruskal. Shortest Path problem. Floyd–Warshall algorithm. Euler and Hamilton graphs.	4		8		12	12	
5. Complexity classes P and NP. Reduction techniques and NP-complete problems. Problems CIRCUIT-SAT, SAT, CLIQUE, VERTEX COVER, HAMILTON and TSP. Approximation algorithms. Approximation schemes FPTAS and PTAS.	2		4		6	6	
6. Laboratory works						16	Project: algorithm implementation, analysis, testing and written presentation.
Prepare for exam						13	^
Total	16		32		48	77	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Four laboratory works: to	40	During the	Each of the four laboratory works is evaluated separately, with a
implement a specific		semester	maximum score of 1 point. It is possible to earn up to 4 points for
algorithm, make			completing all four laboratory assignments. Each programming
experiments, evaluate the			task is defended by demonstrating it and answering the questions
complexity theoretically and			posed.
practically, and prepare a			
presentation and program			
demonstration.			
Exam	60	During the exam	Before the exam, the student must know all course topics and the required literature sources. The exam is graded up to 6 points,
			based on written answers to 6 questions. The final grade is calculated by summing the scores from the programming
			assignments and the exam.

External exam External students have no opportunity to pass the exam.

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
T.H. Cormen,	2022	Introduction to Algorithms, Fourth Edition 4th ed.		MIT Press, Cambridge, Massachusetts
C.E. Leiserson, R.L. Rivest and C. Stein				
V. Dičiūnas	2005	Algoritmų analizės pagrindai		http://www.mif.vu.lt/katedros /cs/Asmen/algoritmu_analize. pdf
Optional reading				
Sandeep Sen and Amit Kumar	2019	Design and Analysis of Algorithms: A Contemporary Perspective		Cambridge University Press
E.M. Reingold, J. Nievergelt and N. Deo	1977	Combinatorial Algorithms: Theory and Practice		Prentice-Hall
R. Čiegis	2007	Duomenų struktūros, algoritmai ir jų analizė		Vilnius: Technika