

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code						
(Concepts of) Quantum Field Theory							
Lecturer(s)	Department(s) where the course	se unit (module) is delivered					
Coordinator: Thomas Gajdosik	Teorinės fizikos ir astronomijos i	nstitutas					

Other(s):

Study cycle	Type of the course unit (module)
Master studies	selectable lecture

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lecture	Fall semester: September till December	English

Requirements for students									
Prerequisites:		Additional requirements (if a	ny):						
Quantum Mechanics, Special I	Relativity								
\mathbf{C}_{1}	T-4-1-4149	Construct horses	C - 16 - 4 1 1						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	52	88

Purpose of the course unit (module): programme competences to be developed Students should learn the basic mathematical formulations that are necessary for Quantum Field Theory. Based on that ground work, the student should be able to understand the mathematical formulation of the Standard Model of particle physics and should grasp what can be formulated beyond the Standard Model.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Special Relativity, calculating the kinematics of	Lecture and reading (self study)	home work, exam
decays or scattering processes with relativistic		
particles		
Concepts of Quantum Field Theory	Lecture and reading (self study)	exam
Gauge Theories	Lecture and reading (self study)	exam
The Standard Model (SM) of particle physics	Lecture and reading (self study)	exam
Beyond the SM: Concepts of Supersymmetry and of	Lecture and reading (self study)	exam
string theory		

Content: breakdown of the topics		Contact hours							Self-study work: time and assignments		
		Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments		
1. Special Relativity Repetition: Invariants, Lorentztransformations, Poincare group [1, 2]; Introduction to Special Relativity and the Poincare algebra	2		1				3	2 2	Repeating, reading Homework 1 3.1 %		

2. Special Relativity: Spinors [2, 7] differential operators implementing the group structure of translations and rotations; spinors as representations of the rotation group; discussion of the group structure of the Poincare algebra	2		1		3	22	Repeating, reading Homework 2 2.8 %
3. SR kinematics: [2] Calculating decays and scattering processes with relativistic particles			2		2	2 3	Reading Homework 3 3.6 %
4. Quantum Field Theory (QFT): Approaches: canonical, path-integral [4, 6, 8, 9, 15] explaining the conceptual basis for the quantisation procedures in field theory	2		2		4	7	Repeating, reading
5. QFT: Feynman diagrams [2, 4, 5, 6, 8, 9] deriving Feynman diagrams as the perturbative expansion of the scattering amplitude that was introduced in the previous lecture	2		2		4	7 2	Repeating, reading Homework 4 4.2 %
6. QFT: Renormalisation [4, 6, 8, 9, 10] showing the need for renormalisation as the connection between theory and experiment; giving an example of renormalisation in the scalar ABC- toy-model	2		2		4	7	Repeating, reading
7. QFT: Gauge theory [4, 6, 8, 9, 13] discussing general properties of gauge theories; introducing gauge fixing as a possibility to define the propagator; quantising the gauge field in the path- integral formalism, including the proper treatment of gauge-fixing	2		2		4	7	Repeating, reading
8. Quantum Electro Dynamics (QED) [4, 6, 8, 9, 13] renormalising quantum electro dynamics and discussing the elementary one-particle-irreducible diagram, including dimensional regularisation; evaluation of the photon propagator gives the Lamb- shift in the low energy approximation	2		2		4	9	Repeating, reading
9. Quantum Chromo Dynamics (QCD) [4,6,8,9,13] energy dependent evaluation of the vector boson propagator leads to an understanding of the running coupling constant; further analysis gives the renormalisation group equation; renormalising QCD shows the opposite sign of the beta function which explains asymptotic freedom and confinement; discussing parton distribution functions as an effective renormalisation prescription for the analysis of high energy collider experiments	2		2		4	9	Repeating, reading
10. The Standard Model: Particle content [2, 3, 14] An overview over the Standard Model (SM) and its particles	2	,	2		4	4 4	Repeating, reading Homework 5 5 %
11. SM: Higgs Mechanism [2, 3, 14] explanation of the Higgs mechanism in the electro- weak Standard Model	2		2		4	7	Repeating, reading
12. SM: Particle detection [2, 3] discussing, how we can connect the classical approach of the experimental detectors with the quantum nature of the detected particles; principle mechanisms for detecting particles; overview over the CMS detector	2		2		4	4	Repeating, reading

13. Beyond the SM: Supersymmetry (SUSY) — MSSM [4, 12, 13, 16] discussing supersymmetry as an extension of the Poincar e algebra; motivating the construction of a supersymmetric field theory; applying the principles to construct schematically the minimal supersymmetric Standard Model (MSSM); discussing the relevance of the MSSM to grand unification and to cosmology; motivating supergravity	2	2		4	3	Repeating, reading
14. Beyond the SM:	2	2		4	3	Repeating, reading
Strings, Stringtheory, Superstrings [12, 17]						
history and concepts of string theory; introducing the						
bosonic string; motivating the introduction of						
superstrings; branes as boundary conditions, becoming dynamical objects; discussing						
compactification and dualities, leading to the						
conjecture of M-theory						
Preparing the seminar presentation					2	
Total	26	26		52	88	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Participation in the lecture and discussion during the seminars			Active participation
Homeworks	20 %	As announced in the syllabus:	Turing in the homework and correcting it
Seminar presentation	15 %		Giving the presentation
Exam	52 %		Passing the written and the oral part

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading			-	
1. Davig Hoggt	1997	Special Relativity		http://cosmo.nyu.edu/hogg/sr/sr .pdf
2. David Griffiths	1987	Introduction to Elementary Particles		John Wiley & Sons, Inc.; ISBN 0-471-60386-4 (1987).
3. Particle Data Group	2014	The particle adventure:		http://www.particleadventure.o
4. A. Zee	2003	Quantum Field Theory in a Nutshell		Princeton University Press; ISBN 0-691-01019-6 (2003).
5 J. C. Romao and J. P. Silva	2012	A resource for signs and Feynman diagrams of the Standard Model		arXiv:1209.6213 [hep-ph]
Optional reading	1		I	
6. Michael E. Peskin and Daniel V. Schroeder	1995	An Introduction to Quantum Field Theory;		Reading, USA: Addison- Wesley; ISBN 0-201-50397-2
7. P. B. Pal	2010	Dirac, Majorana and Weyl fermions		arXiv:1006.1718 [hep-ph]
8. I. J. R. Aitchison and A. J. G. Hey	2013	Gauge theories in particle physics: A practical introduction. Vol. 1: From relativistic quantum mechanics to QED		Bristol, UK: IOP (2003) 406p
9. I. J. R. Aitchison and A. J. G. Hey	2014	Gauge theories in particle physics: A practical introduction. Vol. 2: Non- Abelian gauge theories: QCD and the electroweak theory		Bristol, UK: IOP (2004) 454 p

10. F. Olness and R. Scalise	2011	Regularization,Renormalization,andDimensionalAnalysis:DimensionalRegularizationmeetsFreshman E & M	Am. J. Phys. 79 (2011) 306	[arXiv:0812.3578 [hep-ph]]
11. David Tong	2007	Quantum Field Theory, University of Cambridge Part III Mathematical Tripos		http://www.damtp.cam.ac.uk/u ser/tong/qft/qft.pdf
12. Warren Siegel	2017	Fields		http://arxiv.org/abs/hep- th/9912205 or http://insti.physics.sunysb.edu/ ~siegel/Fields4.pdf
13. Stefan Pokorsky	2000	Gauge Field Theories		Cambridge University Press; ISBN 0-521-47816-2 (2000)
14. F. Jegerlehner	1991	Renormalizing The Standard Model		PSI-PR-91-08, Apr 1991
15. S. Weinberg	1995	The Quantum Theory of Fields, I and II,		Cambridge University Press; ISBN 0-521-58555-4
16. S. Weinberg	2000	The Quantum Theory of Fields, III		Cambridge University Press; ISBN 0-521-66000-9
17. Matthew D. Schwartz	2014	Quantum Field Theory and the Standard Model		Cambridge University Press; ISBN 9781107034730