

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Molecular Genetics Laboratory	

Academic staff	Core academic unit(s)
Coordinating: dr. Kristina Daniūnaitė, assoc. prof.	Life Sciences Center
Other: -	

Study cycle	Type of the course unit
First-cycle / Second-cycle (suitable for advanced undergraduates and early graduate students)	Optional

Mode of delivery	Semester or period when it is delivered	Language of instruction
In-person laboratory and classroom session: practical laboratory work (wet lab), lectures/seminars, tasks in virtual learning environment (VLE)	Spring semester	English

Requisites								
Prerequisites:	Co-requisites (if relevant):							
Basic knowledge of molecular biology, genetics, and cell biology;	none							
introductory course in biochemistry is recommended.								
Students are expected to be familiar with fundamental concepts in								
DNA structure, gene expression, and basic laboratory safety.								

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work	
5 ECTS	104 hours	44 hours	60 hours	

Purpose of the course unit

The purpose of this course is to provide students with practical experience in fundamental molecular genetics techniques, with an emphasis on DNA and RNA analysis. The course aims to develop students' familiarity with common laboratory methods, experimental planning, and basic data interpretation, preparing them for further study or research in molecular genetics and molecular biology.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
Perform basic molecular genetics	Hands-on laboratory sessions,	Observation of lab performance,
techniques, including DNA/RNA	guided demonstrations, supervised	practical lab reports, completion
extraction, qualitative and quantitative	practical exercises.	of assigned experiments, written
PCR, and restriction enzyme analysis.		test on methodologies
Assess and interpret nucleic acid quality,	Lab exercises with	Lab report data analysis sections,
quantity, and experimental results using	spectrophotometry, gel	written test on data interpretation
standard laboratory methods	electrophoresis, PCR/qPCR data,	
	instructor-led discussions	
Apply proper laboratory practices and	Demonstration of safety	Observation of adherence to
safety procedures when handling nucleic	procedures, discussion of biosafety	safety protocols, lab performance
acids and conducting experiments	principles, monitoring during lab	evaluation, practical skills
	work.	checklist

Communicate experimental procedures and findings effectively through written reports and/or presentations

Lab report writing, group discussions, guidance on scientific communication

Written lab reports, oral presentation, peer and instructor feedback

			Co	ntact	t hours			Indi	vidual work: time and assignments
Content		Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
1. DNA extraction and quality control (isolation of genomic DNA from animal cells, assessment of purity and concentration, gel electrophoresis)	1				4		5	4	Study DNA extraction protocols and other theory; complete pre-lab quiz on DNA isolation principles and laboratory safety; analyze experimental data obtained in the lab; fill in lab notebook
2. Conventional end-point PCR (human Rh blood group determination or alternative application)	1				4		5	6	Review PCR theory and primer design principles; complete pre-lab quiz on PCR setup and expected results; process raw data files obtained in the lab and determine Rh phenotype; fill in lab notebook
3. Restriction fragment length polymorphism (RFLP) analysis (human ABO blood group genotyping or, alternatively, mtDNA haplotype determination)	1				8		9	10	Study RFLP theory and examples; complete pre-lab exercises; process raw data files obtained in the lab and determine genotype; fill in lab notebook
4. Real-time PCR for genotyping (SNP/CNV analysis at selected locus)	1				4		5	8	Study qPCR principles and SNP/CNV analysis; complete pre-lab quiz on qPCR setup and data interpretation; analyze experimental data obtained in the lab; fill in lab notebook
5. RNA extraction and quality control (isolation of total RNA from mammalian cells, assessment of integrity and concentration)	1				4		5	4	Study RNA extraction and QC protocols; complete pre-lab quiz on RNA handling; analyze RNA conc. and integrity data obtained in the lab; fill in lab notebook

6. Reverse transcription and real-time PCR for gene expression quantification (intercalating dye and probe-based detection principles)	1				8		9	8	Study RT-qPCR theory, primer design, and dye/probe detection principles; complete pre-lab quiz on experimental design and expected outcomes; analyze data from qPCR
									experiments; fill in lab notebook
7. Data analysis and integration across experiments, scientific presentation, feedback exchange			4				4	10	Compile all experimental data from wet lab sessions; perform preliminary analysis of the results; submit lab reports via VLE; prepare presentation slides
8. Written test			2				2	10	Complete VLE- based revision exercises; study lecture notes, lab manuals, and previous report data.
Total	6	-	6	-	32	-	44	60	

Assessment strategy	Weight %	Deadline	Assessment criteria
Laboratory works	10%	During the	Attendance in lab works is compulsory.
(compulsory)		semester	Detailed assessment criteria are provided to students during the introductory lecture at the start of the course.
Written test	60%	During the	Cumulative score.
(compulsory)		semester	The test consists of at least 30 questions, primarily multiple-choice, but also including true/false, short-answer, and other question types.
			The test is past if a student receives at least half of the maximum points. If the test is failed, taking the exam is compulsory.
Completion of exercises (compulsory)	10%	During the semester	Cumulative score.
Presentation of	20%	During the	Cumulative score.
experimental data (compulsory)		semester	Detailed requirements and assessment criteria are provided to students during the introductory lecture at the start of the course.
Additional exercises (optional)	Extra points	During the semester	Cumulative score.
Written examination	100%	During the exam session	If a student achieves ≥50.0% of the cumulative score, completes all laboratory work, and fulfills all other compulsory activities:
			The cumulative score is proportionally converted into a 10-point system as a preliminary mark;
			• the student may opt not to take the exam; in this case, the preliminary mark is considered the final grade;
			• if the student chooses to take the exam, the exam result will be considered the final grade.

If a student achieves <50.0% of the cumulative score or fails the test, but completes all laboratory work and other compulsory activities, the student must take the exam. The exam score will then be considered the final grade.
If a student fails the laboratory work or does not complete at least one compulsory activity, he/she does not receive a preliminary mark and is ineligible to take the exam.
The examination consists of 3-6 open-ended questions covering all topics discussed throughout the course.

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link			
Required reading							
[Moderated by the coordinating lecturer]	-	Materials for laboratory exercises and individual assignments	-	VLE (Moodle) – course's webpage			
Reagent manufacturers' websites	-	Protocols, product datasheets, and technical information relevant to the experiments	-	https://www.thermofisher.co m/lt/en/home.html https://www.qiagen.com/us and others			
Selected thematic research papers and reviews	2020 or newer	Research papers and reviews, book chapters, covering the theory and applications of the techniques used in the course	-	various			
		Recomme	ended reading				
Online video tutorials	-	Free instructional videos demonstrating the laboratory techniques	-	YouTube channels such as JoVE Science Education, Learn Genetics, or institutional lab tutorials			