

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code					
Nonlinear Optics						
Lecturer(s)	se unit (module) is delivered					
Coordinator: assoc. prof. Rytis Butkus	f Physics					
Other(s):						

Study cycle	Type of the course unit (module)
Second (master program)	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
	Autumn semester	Lithuanian

Requirements for students						
Prerequisites:	Additional requirements (if any):					
Courses of Optics, Laser Physics (or Quantum Electronics)						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	48	92

Purpose of the course unit (module): programme competences to be developed

General: training of critical thinking, ability to work in a team Specific: to understand and explain propagation principles of light in fibers and waveguides, basis of fiber communication principles and architectures, fiber manufacturing, fiber components, sensors and lasers; understanding nonlinear phenomena in fibers and their applications.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
After this course the students will learn about different types of fibers, main fiber parameters and fiber components. The students will also learn about key practical applications of fibers in data transmission, sensors and lasers.	Lectures and seminars	Cumulative mark: evaluation of presentation during seminar and moderating another seminar, exam evaluation.

	Contact hours					Sel	Self-study work: time and assignments		
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Early optical communications. Development of	4		2				6	7	Reading of lecture
fibers and their initial applications. The use of fiber									notes, textbooks and
in data transmission systems. The main parameters of									scientific literature

fibers.						
2. Propagation of light in fibers: geometrical and wave optics approach. Numerical aperture. Modes in fibers. Types of fibers. Index profile and photonic crystal fibers. Doped fibers and fibers made from different materials. Testing techniques for different fiber features.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
3. Losses in fibers: physical origins and causes. Impact of impurities and lowest possible losses. Macro and micro bending losses, fiber connection types and their losses. Manufacturing techniques of fibers.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
4. Fiber optics communications cables and lines. Different types of dispersion and its impact on data transmission rate. Zero dispersion region dispersion parameter. Management of fiber dispersion. Principles of data coding and data bandwidth.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
5. Elements of integrated optics. Types of waveguides and their applications. Fiber couplers, multiplexers and demultiplexers, phase controllers and electro-optic modulators, polarizers and polarization controllers.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
6. Fiber sensors. Hybrid and intrinsic sensors based on intensity, phase, polarization and spectral change. Physical variables. Fiber sensor multiplexing. Examples of fiber sensor applications.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
7. Fiber lasers and amplifiers. Pumping schemes, double-clad fibers, large-mode-area fiber lasers and fiber-rods. CW and pulsed regimes, techniques of Q- switching and mode-locking. Lasers utilizing different glasses as host materials and different dopants. Fiber laser energy combining.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
8. Fiber nonlinear optics. Main nonlinear phenomena observed in fibers. Nonlinear susceptibility, advantages and disadvantages of fibers. Four-wave mixing, resonant scattering phenomena, self-phase modulation and supercontinuum generation. Applications of nonlinear phenomena.	4	2		6	7	Reading of lecture notes, textbooks and scientific literature
9. Preparation for the exam					36	
Total	32	16		48	92	

Assessment strategy	Weigh	Deadline	Assessment criteria
	t,%		
Seminar presentation moderation of another seminar	25	By the end of semester	One presentation must be given during the course of seminars related to the subject of the lectures. The assessment of the presentation is based on whether the material is properly related to the selected topic of a presentation, whether or not the material is consistent and is explained clearly and are the questions of the attendees answered properly. Part of the assessment is related to quality of moderation of another seminar.
Exam	75	By the end of the course	Exam in written form, Questions and exercises from any subject of the course. Assessment is based on the correctness of the answers and are the exercises solved properly.
Overall	100		The overall mark is the sum of the above items and is rounded.

Author	Year	Title	Issue of a	Publishing place and house
	of		periodical	or web link
	public		or volume of a	

	ation		publication	
Compulsory reading				
1. F. Mitschke	2016	Fiber Optics	Second Edition	Springer, Heidelberg
 D. Čiplys, A. Krotkus, V. Smilgevičius 	2008	Šviesolaidžių optika		Vilniaus universiteto leidykla, Vilnius
Optional reading				
1. J. Crisp, B. Elliott	2005	Introduction to Fiber Optics	Third edition	Elsevier, Oxford
2. S. Gistvik	2005	Optical Fiber Theory for Communication Networks	Third edition	John Wiley & Sons, New York