
COURSE UNIT DESCRIPTION

Course unit title Course unit code

Type-driven development TYDD7134

Lecturer(s) Department where the course unit is
delivered

Coordinator: assoc. prof. Karolis Petrauskas
Other lecturers: p’ship assoc. prof. Viačeslav Pozdniakov

Department of Software Engineering,
Institute of Compute Science,
Vilnius University

Cycle Level of course unit Type of the course unit
First - Elective

Mode of delivery Semester or period when the course
unit is delivered

Language of instruction

Face-to-face Spring semester Lithuanian, English

Prerequisites and corequisites
Prerequisites: “Functional programming”. Corequisites (if any): -

Number of ECTS credits
allocated

Student’s workload Contact hours Self-study hours

5 130 64 66

Purpose of the course unit: programme competences to be developed
Introduce students to elaborated programming language type systems, explore their application to software engineering
problems, analyze relevant theoretical background, and develop skills in type-driven development and verification of
software.
Generic competences:

• Continuous learning (2).
◦ Will be able to independently acquire new knowledge, methods, and tools and apply them in practice (2.3).

Specific competences:
• Knowledge and abilities of conceptual foundations (4):

◦ Students will understand the basic concepts of software engineering, including several frontier areas,
potential application domains, and the discipline's scope (4.1).

◦ Will be able to apply theoretical knowledge in mathematics, software engineering, computer science, and
algorithmic principles to build software systems (4.2).

◦ Will be able to think abstractly, use formal methods, prove correctness, formalize, and model real-world
problems (4.3).

• Technological, methodological knowledge and abilities, professional competence (6):
◦ Will be able to combine the theory and practice of software engineering, considering problem-solving

techniques and assessing technological, economic, social, and legal contexts (6.1).
◦ Will be able to select and use appropriate modern methods, models, problem-solving patterns, skills, and

tools necessary for developing and maintaining application systems, including new application areas (6.2).
◦ Will be able to use existing computer hardware and software, identify, understand, and apply frontier

technologies (6.3).
Learning outcomes of the course unit:

students will be able to
Teaching and learning

methods
Assessment methods

Understand dependent types and apply them to
software engineering problems.

Lectures, problem-oriented
teaching, case studies,
information retrieval, literary
reading, individual work,
tutorials, lab assignments.

Lab assignments and
presentation of their results,
written exam (open, semi-open
and close-ended questions and
tasks).

Formulate desired software properties as
dependent types and develop implementations
conforming to those properties.
Analyze scientific papers in the domain of type
systems and understand their contribution in the
context of core knowledge.

1

Apply type-driven development in the Idris2
programming language and understand
conceptual relations to other languages with
similar type systems.

Course content: breakdown of
the topics

Contact hours Self-study work: time and assignments

L
ec

tu
re

s

T
ut

or
ia

ls

S
em

in
ar

s

P
ra

ct
ic

e

L
ab

 a
ss

ig
nm

en
s

P
ra

ct
ic

al
 tr

ai
ni

ng

C
on

ta
ct

 h
ou

rs

S
el

f-
st

u
d

y
h

ou
rs

Assignments

1. Introduction and
fundamentals.

2 2 4 4

Tasks at practical classes.
Laboratory assignments.
Discussion on related papers.
Self-study of literature.

2. A vector as a length indexed
type, its use cases, verifying its
properties.

2 2 4 5

3. User-defined datatypes. 2 2 4 5
4. Type-driven development,
programming with first-class
and dependent types.

4 4 8 6

5. Equality, rewrites in types,
totality and decidability.

2 2 4 4

6. Curry-Howard
correspondence, proving by
programming.

2 2 4 3

7. Expressing complex subtypes
with predicates.

2 2 4 5

8. Decomposing data structures
in alternative ways using views.

2 2 4 5

9. Streams and infinite
execution.

2 2 4 5

10. Typed state machines as
protocol specifications.

4 4 8 6

11. Session types and
concurrency.

2 2 4 5

12. Linear types and resource
management.

4 4 8 6

13. Summary and relation to
other programming languages.

2 2 4 3

14. Preparing for the exam and
taking the final exam (written).

4

Total 32 32 64 66

Assessment strategy Weight,% Deadline Assessment criteria
Practical assignments 30 Each week. Students perform small practical assignments related to the topic

of the lecture. Any student should be able to present his work for
a class, explaining how and why he came to the solution.

Lab assignment 30 Progress
declared each
week.
Final
presentation –
16th week of
the semester.

Students choose a domain and develop a program by applying
type-driven development practices. The program has to use all
the main type-driven constructs like dependent types, typed state
machines, session, and linear types, and others. Also, domain-
specific properties have to be stated and proved. The student has
to be able to explain all the decisions and re-implement a small
function explaining all the steps. Progress has to be declared
every week.

Exam (written) 40 Exam session. Exam consists of open, semi-open and close-ended questions
from the topics covered in lectures.

Author Year Title Number or Publisher or URL

2

volume
Required reading
Edwin Brady 2017 Type-Driven Development

with Idris
Manning.
ISBN: 978-1617293023

Recommended reading
Adam Chlipala 2013 Certified Programming with

Dependent Types
The MIT Press.
ISBN: 978-0262026659

Samuel Mimram 2020 Program = Proof Independently published.
ISBN: 979-8615591839

3

