

COURSE UNIT DESCRIPTION

Course unit title	Code
Quantum Mechanics	

Annotation

Electricity and magnetism is third course on classical physics. The course is dedicated for understand electrical and magnetic phenomena. Electric and magnetic forces and fields are introduced. The electromagnetic laws are described using calculus, and are summarized by Maxwell equations in the end of the course. The strong focus during the course is on performing laboratory works and problems solving.

Lecturer(s)	Department, Faculty
Coordinating: doc. dr. Tadas Malinauskas	Faculty of Physics

 Study cycle
 Type of the course unit

 Bachelor
 Mandatory

Mode of delivery	Semester or period when it is delivered	Language of instruction
Auditory and remote teaching	Autumn semester	English

Requisites					
Prerequisites:	Co-requisites (if relevant):				
The course presumes a mathematics background that	None				
includes basic algebra and trigonometry, functions,					
vectors, matrices, complex numbers, ordinary differential					
and integral calculus, and ordinary and partial differential					
equations. The course includes an optional and ungraded					
refresher background mathematics sections.					
In physics, students should understand elementary					
classical mechanics and basic ideas in electricity and					
magnetism. (The course explicitly does not require					
knowledge of more advanced concepts in classical					
mechanics, such as Hamiltonian or Lagrangian					
approaches, or in electromagnetism, such as Maxwell's					
equations.)					

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	140	64	76

Purpose of the course unit: programme competences to be developed

The primary objective of this course is to provide introduction in quantum mechanics to individuals who possess a solid understanding of physics or engineering at the university level. Quantum mechanics concepts and techniques are indispensable in numerous fields of engineering, technology and science, including materials science, nanotechnology, electronic devices, and photonics. This course offers a comprehensive introduction to quantum mechanics and its practical applications.

Learning outcomes of the course unit	Teaching and learning	Assessment methods
	methods	
Demonstrate proficiency in explaining	Lectures, homework, problem	Homework, midterm and finals
fundamental concepts employed in quantum	solving	exams
mechanics, including wave functions and		
operators.		

They will be able to apply quantum mechanics	Lectures, homework, problem	Homework, midterm and finals
concepts to describe basic quantum systems and	solving	exams
calculate various measurable quantities		
Ability to apply analytical and numerical methods to solve problems of quantum mechanics	Lectures, homework, problem solving	Homework, midterm and finals exams
Ability to address physical problems critically, identifying the laws and concepts that apply in a specific situation,	Lectures, homework, problem solving.	Homework, midterm and finals exams

	Contact hours						Individual work: time and assignments		
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship/work placement	Contact hours, total	Individual work	Assignments
1. Introduction. Introduction to Superposition. The wave-particle duality of matter and light.	2			2			4	5	Liboff 2 Chapter
2. Experimental observations of Quantum Phenomena. Atomic spectra. Photoelectric effect. Electron diffraction. Black body radiation.	2			2			4	5	Liboff 2 Chapter.
3. Wave function. Temporal and spatial frequency. Meaning of wavefunction. Normalization. Plane wave. Superpositon. Fourier analysis. Uncertainty Principle	2			2			4	5	Griffiths 1.
4. Expectation value . Uncertainty. Momentum operator. Operators. Eigenfunction, eigenavalue. Energy operator. Expression of WF in different bases. Collapse of WF.	2			2			4	5	Griffiths 1.
5. The Schrodinger Equation. Expansion coefficients. Time evolution in QM. The free particle. The infinite square quantum well.	4			4			8	8	Griffiths 1.
6. The finite square well. Bound states vs scattering states. Symmetric and antisymetricsolutions. Commutation of operators.	2			2			4	5	Griffiths 2.6 Liboff 8.1
7. Tunelling. Wavepacket. Scattering from barrier. Tunelling through barrier.	2			2			4	5	Liboff 7.6
8. The harmonic oscillator. Operator method. Ladder operators.	2			2			4	5	Griffiths 2.3 Liboff 7.2,7.3 Miller 2.10
9. Pertubation theory . Time-independent pertubation theory. Hermitian operators.	2			2			4	5	Griffiths 6.1 Miller 6.3 Liboff 13.1
10. Approximation methods in QM. Functions and operators as vectors and matrices. Finite matrix method.	2			2			4	5	Miller 4.1-4.5, 6.
11. Angular Momentum in QM . Orbital Angular Momentum. Visualization of spherical harmonics.	2			2			4	5	Griffiths 4 Liboff 9
12. The Hydrogen Atom . Central Potentials. Separation of Variables. Quantum numbers and their significance.	4			4			8	8	Griffiths 4 Liboff 10
13. Spin Wavefunctions . Elements of Matrix Mechanics.	2			2			4	5	Griffiths 4

14. Time-dependent perturbation theory.	2	2			4	5	Halliday 30 ch.
Fermi's golden rule. Emission and absoption of							Liboff 13.5, 13.6
Radiation.							
Total	32	3	2		128	76	

Assessment strategy	Weight	Deadline	Assessment criteria			
Assessment strategy	%	Deaume	ASSESSMENT CITCHIa			
Midterm exam	20	After 6 Lectures	With 15-20 questions comprising multiple-choice, short-			
		are finished	answer, and problem-solving questions, students will need			
			to demonstrate a comprehensive understanding of the			
			basic framework of quantum mechanics.			
			Maximum score – 20 points.			
Midterm exam	20	After 12 lectures	The assessment in a midterm exam will involve a			
		are finished.	combination of 15-20 multiple-choice questions, short-			
			answer questions, and problem-solving questions.			
			understanding of the fundamental principles of quantum			
			mechanics including the solutions of the Schrödinger			
			equation for several different potentials			
			Maximum score – 20 points.			
Final exam	40	During exam	The assessment in a midterm exam will involve a			
		session	combination of 15-20 multiple-choice questions, short-			
			answer questions, and problem-solving questions.			
			Students are expected to demonstrate a solid			
			understanding of the fundamental principles of quantum			
			mechanics, including the solutions of the Schrödinger			
			equation for several different potentials.			
			Maximum score – 40 points.			
Homeworks (problem	20+	All semester	About 25 problems have to be solved at home during the			
solving).			semester.			
There is possibility to collect more than 20 points.						

"The final score will be determined using the formula: Score = round(Points/10). If a student does not pass the course through accumulative scoring, they will be required to take an exam without accumulative scoring. This exam will include a combination of written and oral questions, providing students with the opportunity to demonstrate their knowledge and understanding of the course material.

Author	Publishing	Title	Issue of a periodical	Publishing house or
	year		or volume of a	internet site
			publication; pages	
		Required reading	ng	
David A. B. Miller	1991	Quantum Mechanics		Oxford
		for Scientists and		
		Engineers		
		Recommended rea	ding	
David J. Griffiths	2005	Introduction to	Second Edition,	Pearson Education
		Quantum Mechanics	Chapters 1-4,6,9	
R. L. Liboff	2003	Introductory Quantum	Fourth edition	Addison-Wesley
		Mechanics		
J. Chmeliov, V. Butkus,	2018	Kvantinė fizika		Vilnius: Vilniaus
L. Valkūnas				universiteto leidykla