

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module)	Code					
New materials and technologies						
Lecturer(s)	se unit (module) is delivered					
Coordinator: Ass. Prof. Renata Butkutė	Faculty of Physics					

Other(s):

Study cycle	Type of the course unit (module)			
Second (master)	Compulsory			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lectures, seminars, laboratory works	I (autumn) Semester	Lithuanian/English

Requirements for students							
Prerequisites: Knowledge of general physics, solid state	Additional requirements (if any):						
physics and quantum mechanics. General chemistry and							
material science knowledge is preferable							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
10	280	80	200

Purpose of the course unit (module): programme competences to be developed								
	To provide the knowledge and skills of materials engineering and advanced growth technologies. To realize the							
peculiarities of fabrication and processing of micro- and nano- optoelectronic devices								
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
	methods							
Student's ability to apply basic knowledge in	Lab works,	Oral questioning, assessment of						
technological processes of advanced materials	visit and practice in the	practical skills						
growth and characterization.	technological cleanroom, team							
Ability to improve the practical skills.	discussion							
Knowledge of the operating principles of various								
technological methods								
Ability to understand scientific literature, to	Seminars and cross-discussions	Analysis of the particular case						
exchange the information and to present the		Evaluation of presentation						
results.		quality, of ability to answer to						
Ability to perform comparisons of materials of		the questions, of ability to						
different categories and to analyse their		summarize the obtained						
application, taking into account various physical		information						
processes and phenomena occurring during the								
production (construction).								
Ability to use material parameter and data								
catalogs, manuals, calculations and formulas								
Deepening of theoretical knowledge for materials	Lectures,	Written exam						
engineering. Ability to understand the technical	video material analysis debates							
literature.								
Ability to interpret and apply knowledge.								
Understanding the problems of materials								
engineering and generating of possible solutions								

			Con	tact h	ours			Self	-study work: time and assignments
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction. Basics of materials science and technology. Micro- and nanoscale technology, history, concepts of routes and technological operations. Work safety and ecology problems. Classification of materials	4						4	4	Repetition for exam.
2. Mechanisms and kinetics of phase transformation. Mechanical properties of materials. Phase diagrams, their formation. Phase diagrams of multicomponent compounds. Diagram interpretation and application for monocrystals and thin layers growth	6						6	20	Repetition for exam.
3. Methods of crystals growth. Self- and heterogeneous formation of crystal seeds, crystal growth and structural defects. Physical chemical analysis methods. Crystal growth methods. Peculiarities of crystal growth of elemental and complex materials. Methods of crystal growth: Czochralski, Bridgman and zone melting. Principles, peculiarities, applications. Glass and glass compound technology. Processing and application aspects of bulk crystals	6						6	18	Preparation for laboratory works. Repetition for exam.
4. Doping of crystals. Diffusion in crystals. Fick laws	6						6	24	Repetition for exam.
5. Methods of manufacturing semiconductor, dielectric and conductive layers. Initiating processes in layers. Nucleation. Types of layer formation and growth. Types of layers: epitaxial, polycrystalline and amorphous layers	6						6	16	Repetition for exam.
6. Chemical technologies of thin layer production . Classification of reactions. Gas epitaxy, chemical deposition using metallo-organic sources	6						6	16	Repetition for exam.
7. Physical thin layer technologies . Thermal evaporation, electron beam deposition. Peculiarities of coating of metal layers. Laser and magnetron deposition. Peculiarities of growth of oxides and multi-component layers. Epitaxial technologies. Molecular beam epitaxy. Homoepitaxy and heteroepitaxy. Heterogeneous compounds and structures. Nanoscience and nanotechnologies	6						6	18	Preparation for laboratory works. Repetition for exam.
8. Modern technologies of photovoltaic cells. Peculiarities of thermal evaporation of multicomponent solar cells. Production of photovoltaic cells by magnetron sputtering using multiple sources. Formation of the crystalline structure by ex-situ annealing process. Routes for forming photovoltaic contacts	8						8	20	Repetition for exam.
Seminars(separatetopics):• Analysis of review articles on material engineering;			16				16	16	Analysis of the literature on the given topic, preparation of

 Analysis of examples of materials engineering; Material engineering in the field of photovoltaics 						presentation and short report
Lab works: • Thin layer deposition technologies 1. Deoxidation of GaAs substrate in MBE reactor 2. GaAs homoepitaxy using MBE technique 3. Growth rate evaluation from reflection of high energy electron diffraction intensity oscillations 4. Characterisation of optical and electrical properties of GaAs layers			16	16	24	Preparation for laboratory works, writing of reports
Total	48	16	16	80	200	

Assessment strategy	Weight, %	Deadline	Assessment criteria
Seminars rating	50	All course	Ability to understand and accomplish the tasks during the seminars
Exam (written form)	50	During the	2 questions. Assessment of answer particularity, consistency
		exam session	and mistakes

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
I.Šimkienė	2008	Moderniosios medžiagų technologijos		Vilnius, VU leidykla
A.Kvedaravičius, R. Navickas	1987	Silicio integrinių schemų gamybos vadovas		Vilnius, Mokslas
David A. Glocker and S. Ismat Shah	1995	Handbook of thin films process technology		Philadelfia, DA1906
William D. Calhslev	2001	Fundamentals of Materials Science and Engineering		John Wiley&Sons, Inc., N. Y
Stephen A. Campbell	2001	The science and engineering of microelectronic fabrication		Oxford University Press
T. Markvart, L. Castañer	2005	Solar cells: materials, manufacture and operation		Elsevier Advanced Technology
Bhushan, Bharat	2010	Handbook of nanotechnology		Berlin : Springer Science+Business Media
Optional reading				
Chris A. Mack	2007	Fundamental principles of optical lithography– the science of microfabrication		John Wiley and Sons
J. Poortmans, V. Arkhipov	2006	Thin film solar cells: fabrication, characterization and applications		John Wiley and Sons