

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module)	Code				
Data mining					
Lecturer(s)	se unit (module) is delivered				
Coordinator: prof. dr. Jurgita Markevičiūtė	Department of Statistical Analysis				
	Institute of Applied Mathematics				
Other(s):	Faculty of Mathematics and Info	rmatics			
	Naugardukas st., 24				

Study cycle	Type of the course unit (module)			
Second	Compulsory			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to- face	First (autumn) semester	English/Lithuanian

Requirements for students					
Prerequisites: Additional requirements (if any):					
	Parametric and nonparametric statistics or econometrics				
Multivariate statistics					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	150	42	108

Purpose of the course unit (module): programme competences to be developed

The main goal of the course is a) to learn to find and analyse empirical data from various sources; b) to define the process of developing a model in a way that one can understand c) to create and evaluate appropriate models and use best methods in a situation, evaluate adequacy of the results. Enhance critical and analytic thinking.

Competences

- creatively solve nonstandard theoretical and empirical problems (B1)
- critically analyze and correctly apply the results presented in the scientific literature (B2)
- concisely and clearly present the results of the analysis (B3.4)
- to combine knowledge of statistics, economics, mathematics and other sciences for solving practical problems (B4.2)
- to know the static and dynamic models and methods of analysis: a) in the time and frequency domain; b) in a continuous and a discrete time (D5.1)
- to understand the underlying probabilistic laws and statistical principles used for the stochastic models (D5.2)
- an understanding of empirical adequacy testing principles of economic and statistical models and can apply them in practice (D8.1)
- knows various model adequacy tests for the identification of potential problems (D8.2)
- to create and supervise statistical and / or economic models (D9.1)
- to create and supervise machine learning algorithms (D9.2)
- prepare raw empirical data for the econometric analysis and professionally operate the econometric software (D10)

I	Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods	
•	To prepare training set data for further analysis.	Lectures, labs, case studies.	Individual project, exam.	

 To quantify measure of model prediction performance. To build and analyse linear regression, partial least squares and penalized models. To build and use nonlinear regression models using neural networks, multivariate adaptive regression spline, and support vector machine and k-nearest neighbours. To build and understand regression trees and rule-based models. 	Lectures, labs, case studies.	Individual project, exam.
 To build and understand linear classification models. To build and understand nonlinear classification models. To build and understand classification trees. 	Lectures, labs, case studies.	Individual project, exam.
 To make suitable conclusions, interpretation of the model. To understand and explain the pitfalls related to the modelling techniques and big data. 	Lectures, labs, case studies.	Individual project, exam.

Content: breakdown of the topics		Contact hours					Self-s	Self-study work: time and assignments	
		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction. Prediction Versus Interpretation. Key Ingredients of Predictive Models. Terminology	2				4		6	18	[1] ch. 1.4 analyse the examples
2. General strategies. Data pre-processing. Over fitting and model tuning.	2				4		6	30	[1] ch. 3 and 4, exercises, p. 58-59 and 89-92
3. Clustering	2				4		6		[2] ch. 10
4. Regression models. Linear and nonlinear regression. Regression trees.	4				8		12	30	[1] ch. 6, 7 and 8, exercises, p. 137- 139, 168-171, 218- 220.
5. Classification models. Linear and nonlinear classification. Classification trees.	4				8		12	30	[1] ch. 12, 13 and 14 exercises, p. 326- 328, 366-367, 411- 413.
Total	14				28		42	108	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria
Group project The separate parts of a project will be evaluated using the following weights:	60%	During semester	Students are evaluated according to the project's originality, compliance with subject methods and goals, project quality and presentation of the project and/or its parts on time.
• 30% topic, abstract and literature review;			

 40% final paper; 30% defence and reviewing of the colleague's paper. The defence is mandatory. If you miss the defence, your final evaluation of your coursework equals zero. 			
Exam	40%	January	A test with 40 questions. Each question is worth one point.
Extern exam			
Individual project	60 %	January	Students are evaluated according to the project's originality, compliance with subject methods and goals, project quality and presentation of the project and/or its parts on time.
Exam	40%	January	A test with 40 questions. Each question is worth one point.

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
[1] Max Kuhn and Kjell Johnson	2013	Applied Predictive Modeling		Springer Science+Business Media New York
[2] Han, J., M. Kambe, and J. Pei	2012	Data Mining: Concepts and Techniques		https://www.sciencedirect.co m/book/9780123814791/data- mining-concepts-and- techniques
[3] James, G., Witten, D., Hastie, T. & Tibshirani R.	2023	An Introduction to Statistical Learning with Applications in R. Second edition		https://www.statlearning.com/
Optional reading				
Max Kuhn and Kjell Johnson	2015	Documentation of R package AppliedPredictiveModeling		https://cran.r- project.org/web/packages/Ap pliedPredictiveModeling/Appl iedPredictiveModeling.pdf
Max Kuhn	2016	Documentation of R package carret		http://topepo.github.io/caret/in dex.html