





## **SUBJECT DESCRIPTION**

| Course unit title                     | Course unit code |
|---------------------------------------|------------------|
| History and philosophy of mathematics |                  |

| Lecturer(s)                             | Department where the course unit is delivered                                                      |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|
| Coordinator: Raivydas Šimėnas<br>Other: | Institute of Mathematics<br>Faculty of Mathematics and Informatics<br>Naugarduko 24, 03225 Vilnius |

| Cycle          | Level of course unit | Type of the course unit |
|----------------|----------------------|-------------------------|
| 1st (Bachelor) |                      | Optional                |

| Mode of delivery | Semester or period when the course unit is delivered | Language of instruction |
|------------------|------------------------------------------------------|-------------------------|
| Face-to-face     | 5th semester                                         | English                 |

| Prerequisites and corequisites          |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|
| Prerequisites: Corequisites (if any): - |  |  |  |  |  |

| Number of ECTS credits allocated | Student's workload | Number of contact work hours | Number of stand-alone working hours |
|----------------------------------|--------------------|------------------------------|-------------------------------------|
| 5                                | 130                | 48                           | 82                                  |

## Purpose of the course unit: programme competences to be developed

The aim of the course is to introduce students to modern views of mathematics. In the first part of the semester we will study the views of mathematics created by mathematicians themselves. One of them focuses on sets while the second - on category theory as the foundation of mathematics. During the second half of the semester we will look at the interpretations offered by the philosophers of mathematics: sui generis, modal, and mixed set theoretic-modal.

| Learning outcomes of the course unit: students will be able to          | Teaching and learning methods | Assessment methods           |
|-------------------------------------------------------------------------|-------------------------------|------------------------------|
| Critically appreciate various streams in the philosophy of mathematics. | Lectures, individual          | Tests, paper, exam (written) |
| Present their arguments in writing.                                     | work with literature          | rests, paper, exam (written) |

|                                                  |    | Contact hours             |                      |                  |         |                          | Individual work: time and assignments |                                  |  |
|--------------------------------------------------|----|---------------------------|----------------------|------------------|---------|--------------------------|---------------------------------------|----------------------------------|--|
| Course content: breakdown of the topics          |    | T<br>ut<br>or<br>ia<br>Is | Se<br>mi<br>na<br>rs | Pra<br>ctic<br>e | La<br>b | Con<br>tact<br>hou<br>rs | In di vi du al w or k                 | Assignments                      |  |
| Historical context                               | 8  |                           |                      |                  |         | 8                        | 14                                    |                                  |  |
| Set theory as the foundation of mathematics      | 8  |                           |                      |                  |         | 8                        | 14                                    |                                  |  |
| Category theory as the foundation of mathematics | 8  |                           |                      |                  |         | 8                        | 14                                    | Individual reading, written work |  |
| Sui generis view                                 | 8  |                           |                      |                  |         | 8                        | 14                                    |                                  |  |
| Modal view                                       | 6  |                           |                      |                  |         | 8                        | 14                                    | 4                                |  |
| Set theoretic-modal view                         | 6  |                           |                      |                  |         | 8                        | 12                                    |                                  |  |
| Exam                                             |    |                           |                      |                  |         | 4                        |                                       |                                  |  |
| Total                                            | 44 |                           |                      |                  |         | 48                       | 82                                    |                                  |  |

| Assessment strategy | Weight<br>(%) | Assess-<br>m e n t<br>time | Assessment criteria                                                                                                                                                                              |
|---------------------|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weekly tests        | 30            | Course<br>of se-<br>mester | At the beginning of each class, the students will have to briefly answer one question from the previous lecture. They will be assessed on their ability to digest the theory.                    |
| Exam (written)      | 40            | End of<br>s e-<br>mester   | At the end of the semester, the students will have to take an exam. The exam will consist of several open questions. The students will have to demonstrate the ability to think philosophically. |
| Paper               | 30            | End of<br>s e-<br>mester   | During the course of the semester, the students will have to write a paper on the topic of their choice. The instructor will assess students' ability to express themselves clearly.             |

| Author                           | Year | Title                                                            | Publisher or URL           |
|----------------------------------|------|------------------------------------------------------------------|----------------------------|
| Required reading                 |      |                                                                  |                            |
| G. Hellman and S. Shapiro        | 2019 | Mathematical Structuralism                                       | Cambridge University Press |
| Recommended reading              |      |                                                                  |                            |
| P. Benacerraf and H. Put-<br>nam | 1984 | Philosophy of Mathematics:<br>Selected Readings (2nd<br>edition) | Cambridge University Press |
| J. Stillwell                     | 2010 | Mathematics and Its History (3rd edition)                        | Springer                   |