

COURSE UNIT DESCRIPTION

Course unit title Code Technologies of Optical and Laser Elements Code

Annotation

The course is dedicated for students, seeking master degree in Laser Technology program at the Faculty of Physics of Vilnius University or doctoral degree to acquire skills and special knowledge related to the components of laser devices - optical elements. The course reviews the basic properties of optical elements: their material properties, production and characterization methods. Methods of synthesis for both crystalline and glassy solids are overviewed including their rough and precise machining (shaping of optical surfaces). Much attention is paid also to the optical thin films and related deposition technologies. Methodologies for characterization of such elements are reviewed. The methods of production technology optimization are discussed while introducing design of experiments.

Lecturer(s)	Department, Faculty
Coordinating: Doc. dr. Andrius Melninkaitis	Faculty of Physics, Laser Research Center
Other: Doc. dr. Tomas Tolenis	
j. asist. E. Atkočaitis (laboratory works)	

Study cycle	Type of the course unit
Second (Master)	Compulsory

Mode of delivery	Semester or period when it is delivered	Language of instruction
Auditory and/or distant	Autumn semester	Lithuanian or English

Requisites					
Prerequisites:	Co-requisites (if relevant):				
Optics, Laser Physics Courses	English				

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	134	48	86

Purpose of the course unit: programme competences to be developed

Acquired practical and theoretical knowledge about the operation, properties and applications of laser optical elements: - production technologies (synthesis, formation of optical surfaces, coating; principles of functional optical elements); - quality parameters and their characterization methods;

- optimization of technological parameters.

Learning outcomes of the course unit	Teaching and learning	Assessment methods
	methods	
After the course the students are expected to	The theoretical part is	Total score consists of
know:	presented in the lectures.	evaluation of written exam
• classical optical production technology of laser		answers, evaluation of
elements (including production bulk materials and	Excursion – getting familiar	creativity task and presentation
thin film optical coatings);	with optical production	of individually prepared topic
• parameters describing the quality of optical	facilities.	for seminar (from list of topics)
elements and their evaluation methods (optical		
resistance, cosmetic surface quality, absorption	Individual work:	(Only upon successful
and scattering losses);	preparation and presentation of	completion and defense for
• how to select suitable optical elements for the	seminar materials;	laboratory works)
intended application;		

• principles of production technology		
optimization;		
• global trends in optics development and related		
production technologies.		
Optical element coating technology and	Practical skills are acquired	Defense of laboratory work
quality description	during the laboratory work.	results
Feasibility study of optical elements: "100 + 100"	Individual work	Collection and sorting of ideas
ways of using optical elements		on the use of optical elements

	Cor	ntact	hour	s					ividual work: time and gnments
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship/work	P Contact hours,	Individual work	Assignments
 1. Introduction and general knowledge: the optical elements and their most use cases (<i>creativity task</i>); overview and classification of optical phenomena; complex refractive index and dielectric constants. 	4						4	2 0	Study of lecture material and related textbooks; Creativity challenge: feasibility study of optical elements and their applications;
 2. Optical materials: spectral properties. dielectrics in solid state: features, nature of colors and Lorentz model; metals and their optical properties: Drude model; 	6						6	8	Study of lecture material and related textbooks; Numerical simulation of spectral response;
 3. Optical materials: synthesis and doping. optical glasses: raw materials and production technology; doping with rare metal ions and nanoparticles; growth of optical crystals: Vernuil, Czochralski, Bridgeman, Stepanov, Float zone methods; Rapid growth from a water solution of salt; molecular materials – optical plastics and their spectral properties. 	6						6	6	Study of lecture material and related textbooks;
 4. Optical coatings: classical deposition technologies for forming of optical layers; Physical Vapor Deposition (PVD) Methods: thermal-resistive evaporation; electron beam evaporation; Modifications: glancing angle deposition (GLAD): anisotropic and porous coatings. ion assisted evaporation; Sputtering methods: magnetron sputtering (DC, RF); ion beam sputtering (IBS); Chemical deposition processes: Chemical Vapor Deposition (CVD) Atomic Layer Coating (ALD); Deposition from liquids: sol-gel coatings. 	2					4	6	2	Study of lecture material and related textbooks; Practice/internship at FTMC OCL laboratory: getting familiar with coating deposition apparatus; (In case of acceptance, also visiting one of optics factories in Vilnius)

 5. Optical coatings: the most popular coating designs and their spectral responses. specification of required spectral properties, optical coating design optimization methods; Optical thickness units and classical optical coating structures; antireflection AR coatings (1V, 2V); filters: broadband, "cut-off", narrowband; high-reflectivity mirrors (metallic, dielectric); beam splitters: for intensity, spectral dividers (dichroic filters), polarizers; dispersive coatings (chipped mirrors); types and properties of sculptural coatings. 	2			2	2	2 Study of lecture material and related textbooks;
 6. Optical coatings: selected compartments and related technologies (<i>also available as topics for seminars</i>): - clean room environment; - control methods of growing layer thickness during the deposition process; - vacuum pumps (types: advantages and shortcomings) - cleaning and transportation of optical substrates; - methods of mixing materials during evaporation (optical properties and models of mixtures); - deposition of extremely large optical elements: planetary dome, shading methods; - the most popular coating materials and working gases; 	2			2	2	2 Study of lecture material and related textbooks;
 7. Basic requirements for the quality of optical elements and standardized characterization methods for of optical materials. losses of absorption, scattering and reflection, transmission; estimation of surface shape deviations and roughness; scratch and dig method for cosmetic surface quality assessment; optical resistance and damage threshold; 	6			6	6	5 Study of lecture material and related textbooks;
8. Introduction to optimization of production process. Design of experiment: variable types, response function model, full and fractional factorial designs, screening and optimization strategies, blocking.	2			2	2	 Study of lecture material and related textbooks;
 9. Laboratory work. 1. Investigation of optical resistance. 2. Investigation of optical scattering losses 3. Investigation of absorption losses 			12	12	2 1 2	e
 Seminars. (suggested seminar topics) Spatial, temporal and spectral modulators and specialized optical elements: electro-optical modulators and switches; galvanometric scanners; liquid crystal optical elements and SLM technology; acousto-optical modulators and scanners; micromechanical optical elements – spatial light modulators - M(O)EMS; adaptive optical elements; diffractive optical elements and their lithographic production methods; 		8		8	200	

 volume Berg gratings and related optical elements (VBG technology); laser beam (direction) stabilizers; Faraday isolators; saturable absorbers (photochromic crystals and SESAM coatings); Ultrashort pulse stretchers and compressors (prisms and gratings) Optical materials: methods of shaping and finishing of optical surfaces and bonding of optical surfaces; mechanical processing of glass and crystals: cutting, grinding, polishing; subsurface damage, Beilby layer; diamond turning, production technologies of aspherical and free-form optical elements; corrective polishing and surface etching with ion beams; chemical etching of optical surfaces; nanotexturing of optical surfaces; molding and stamping of plastic and glass elements; optical contact; bonding of optical surfaces using specialized materials; 						
Total						

	XX7 • 1 (
Assessment strategy	Weight	Deadline	Assessment criteria
	%	D 1 1	
Exam	80	During the	Exam in writing: 6 questions from the whole course. The
		exam	overall grade of the exam is from 0 to 8 points, obtained by
		session	summing up the individual assessments for the answers to
			the questions.
Seminar presentation from	10	During the	Prepared presentation with answers to questions and
selected list of topics		semester	discussion. Assessment in a 10-point system, which is up to
			1 point in total with the exam results.
List of collected ideas for	10	During the	Creativity task: optics scrapbook - a list of 200 ideas for the
the use of optics		semester	possible use of optics is prepared, of which at least 100 are
			optical schemes and the other 100 ideas are related to optics
			use in general.
			Assessment in a 10-point system, which is up to 1 point in
			total with the exam results.
Laboratory work -	0	During the	3 laboratory works mandatory, including defense of each
description and defense of		semester	work: upon completion the right to take the exam is
work results			granted
Total	100		The total score is rounded up:
			<5 points - not passed (insufficient)
			5 points - weak
			6 points - satisfactory
			7 points - average
			8 points - good
			9 points - very good
			10 points - excellent

Author	Publishing year	Title	Issue of a periodical or volume of a publication;	Publishing house or internet site
			pages	
		ing		
M.Fox	2005	Optical Properties of		New York;
		Solids		Oxford University Press
J.H.Simmons, K.S.Potter	2000	Optical materials		San Diego, London;
				Academic Press

Eds. H.Bach, N.Neuroth	1998	The Properties of	Berlin;
		Optical Glass	Springer-Verlag
Eds. N.Kaiser, H.K.Pulker	2002	Optical Interference	
		Coatings	Springer
Recommended reading			
D. Ristau	2014	Laser-Induced	CRC Press
		Damage in Optical	
		Materials	
H. Angus Macleod	2021	Thin-Film Optical	CRC Press
		Filters	
Richard Zallen,	2008	The Physics of	Wiley
		Amorphous Solids	
Tayyab I. Suratwala	2018	Materials Science	Wiley
		and Technology of	
		Optical Fabrication.	