

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
ORGANIC OPTOELECTRONICS TECHNOLOGY	

Lecturer(s)	Department(s) where the course unit (module) is delivered									
Coordinator:	Physics	Department,	Institute	of	Photonics	and				
Prof. Saulius Juršėnas	Nanotech	nology Saulėtek	io al. 3, Viln	ius						
Other(s):										

Study cycle	Type of the course unit (module)
M1	

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lectures, seminars, laboratory work	Spring sem.	English

Requirement	s for students
Prerequisites:	Additional requirements (if any):
Basic knowledge on physics and mathematics on the level of the first cycles of physics or engineering studies. Suitable for chemistry students	Basic chemistry course

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
10 cr.	190 h	72 h	208 h

Purpose of the course unit (module): programme competences to be developed

Soft organic materials replace conventional semiconductors in electronics and photonics technologies. Organic optoelectronic devices market is one of the fastest growing. The course will provide the basic knowledge of physical processes in organic materials and of organic optoelectronic device technologies. Course will provide with practical skills of formation of simple organic devices and will enable better adaptation to new coming organic semiconductor devices products and technologies. Course will provide with information on the recent trends in organic optoelectronic device markets.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Students will acquire an understanding of organic optoelectronic materials and their physical processes.	Lectures with visual demonstrations Self-study.	Midterm (open questions)
Students will acquire a basic knowledge of organic electronics and photonics devices, their production technology and operating principles. Students will acquire knowledge on organic optoelectronic devices application areas and device market developments.	Lectures with visual demonstrations. Seminars. Open discussion. Self-study.	Exam (open questions, answers in a written form) Assessment of seminar presentations
Will learn to model the properties of molecular	Theoretical introduction of	Acceptance of practical work.

derivatives by quantum chemistry methods.	DFT, analysis of examples, practical classes. Self-study.	
Learn to test the optical and electrical properties of organic materials and devices.	Lab works. Laboratory work, self-study.	Acceptance
Will learn to analyze the scientific literature in the field of organic optoelectronics.	Analysis of the latest achievements in organic optoelectronics technologies. Open discussion. Self-study.	Assessment of presentation and discussion.

			Con	tact h	ours			Sel	f-study work assignme	: time a nts	ind
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work olacement	Contact hours	Self-study hours	Assign	ments	
Introduction. Development of organic semiconductors. Comparison of organic and inorganic optoelectronic technologies. Organic photonics and electronics market development. Development of organic optoelectronic technologies in Lithuania. Materials used in organic optoelectronics. Typical multilayer structures of devices Typical organic semiconductors. Dominant technologies: small molecules, polymers. Multifunctional materials. Molecular glasses. Charge-separation materials. Emitters: singlet, triplet. Molecular complexes. Nonlinear optical molecules. Other material. Organic layers. Methods for purification of materials. Evaporation in vacuum. Casting from solutions. Obtaining insoluble layers. Alloying. Obtaining multilayer structures by vacuum evaporation and casting methods. Langmuir-Blogett technology. Self-organizing layers. Structuring layers. Problems of longevity and degradation of organic layers. Encapsulation. Properties of organic conjugated molecules. Molecular orbitals, orbital hybridization. Molecular electronic and vibrational states. Potential energy co- configuration diagram. Excitation processes in molecules. Environmental impact, molecular complexes, excitation transfer processes. Fiorster, Dexter energy transfer. Basic knowledge of excitonic excitations in organic materials and polymers. Frenkel's excitons. State of excitons in polyacenes. Exciton- vibronic interaction. Charge-transfer excitons. Exciton polaron and polariton. Exciton transport and relaxation processes. Charge carrier states in organic layers and crystals. Optical and adiabatic band-gap. Carrier	4 4 4 4	<u> </u>	Se				O	50 S	Preparing colloquium	for	the
bands, carrier states density. Defect states. Polymer states. Charge transfer phenomena. Carrier mobility, its temperature and electric field dependence.											

Transmission band model. Carrier transport in							
amorphous layers. Photogeneration and							
recombination of charge carriers.							
Organic devices. Organic photoreceptors. Materials,	10						
devices, principles of operation. Color copying, laser							
printing. Market development of organic thin film							
transistors and circuits. OTFT: materials, derivatives.							
principles of operation. Printed electronics. Organic							
light emitting devices OLED: materials principles							
of operation PLED WLED devices Organic lasers							
Organic light emitting transistors Organic displays							
and lighting devices: device structure operating							
principles and market forecasts. Organic photovoltaic							
devices OPV materials basic technologies							
principles of operation OPV market development							
principles of operation. Of v market development.							
List of selected laboratory works				8		36	Preparing for the lab.
(perform 2 experiments $4 \times 2 = 8$ hours)							works performance
ч г т т т т т т т т т т т т т т т т т т							r
1. Characterization of the xerographic layer (dr.							
K.Genevičius)							
2. TOF in the organic layer (dr. K. Genevičius)							
3 Investigation of exciton fluorescence in polar							
organic materials (dr. S. Raišve)							
4 Measurement of fluorescence quenching time by							
frequency resolution method (dr. D. Vitta)							
5 Measurement of excitation lifetime in various							
molecular systems (dr. S. Daižys)							
DET modeling eventing (16 hours)			16		 	24	DET analysis of
DF I modeling exercises (10 nours)			10			54	DET analysis Of

Theoretical background of DFT. Analysis of model molecular systems. Execution of practical tasks.							teacher-specified molecular compounds
Seminars:		16				88	
Each student prepares two presentations. One (10-15							
min.) Presents a new scientific article on the topics of							
organic electronics (students choose articles							
according to the lecturer's recommendations: new, in							
a high-ranking journal, relevance). The second wider							
presentation (20-30 min.) is prepared on the given							
topics:							
1. Polymer LED manufacturing materials and							
technologies.							
2. Materials and technologies for large area lighting							
devices.							
3. Flat plastic monitor technologies.							
4. Polymer sensors (artificial skin, artificial nose,							
artificial tongue, immunoassays).							
5. Organic vapor deposition (OVPD).							
6. Thermal imaging and microcontact printing.							
7. Digital lithography in OTFT production.							
8. Organic electronics technology "wet" by printing.							
9. Organic photodiodes.							
10.Organic photonic devices, production							
technologies and principles of operation.							
11. Organic nonlinear optical materials and devices.							
12. Organic thermoelectric power devices. OTEPD:							
substances, derivatives and principles of operation.							
	22	16	16	0	70	20	
1 otal	32	10	10	0	12	20	
						0	

Assessment strategy	Weigh	Deadline	Assessment criteria
Midterm. Performance method: answers in a written form. (open questions)	30	Middle of the Semester	Mastered basic knowledge, %
Seminar presentation	20	Semester, at the scheduled time	Evaluation of presentation: novelty, completeness, presentation
Scientific paper report	10	Semester, at the scheduled time	Evaluation of presentation: novelty, message, presentation
Exam. Performance method: answers in a written form. (open questions)	40	Exam session	Mastered course knowledge, %

Author	Year	Title	Issue of a	Publishing place and house
	of		periodical	or web link
	public		or volume of a	
	ation		publication	
Compulsary reading				
A.Kohler and H.Bassler	2015	Electronic Processes in		Weinheim, Germany, Wiley-
		Organic Semiconductors		VCH
Ed.: W.Hu	2013	Organic Optoelectronics		Weinheim, Germany, Wiley-

				VCH			
M.Pope, C.E.Svenberg	1999	Electronic Processes in		N.Y.: Oxford Univ. Press			
		Organic Crystals					
W.Tress	2014	Organic Solar Cells	V.208	Heidelberg, Springer			
Ron Mertens	2016	The OLED Handbook		Ron Mertens			
Optional reading							
Ed. W.Brutting, Ch.Adachi	2012	Physics of Organic		Weinheim, Germany, Wiley-			
		Semiconductors		VCH			
D.A.Bernards,	2008	Organic Semiconductors in	V. 107	Heidelberg, Springer			
R.M.Owens.		Sensor Applications					
G.G.Malliaras eds.							
B.D.Malhotra	2002	Hanbook of Polymers in		Shawbury: RAPRA			
		Electronics,		Technology LTD			