

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Time Series Analysis	Confirmed on May 15, 2024

Academic staff	Core academic unit(s)
Coordinator(s): Dr. Žymantas Budrys	Faculty of Economics and Business Administration

Study cycle	Type of the course unit			
First (Bachelor's)	Elective			

Mode of delivery	Semester or period when it is de- livered	Language of instruction
Face-to-face	Semester 5	English

Requisites							
Prerequisites: Mathematica	l Methods, Statistical The-	Co-requisites (if relevant):	none				
ory, Econometric Theory and	d Practice I, Econometric						
Theory and Practice II, Com	puting and Data Analysis						
Number of ECTS	Student's workload (to-	Contact hours	Individual work				
credits allocated	tal)						
5	130	36	94				

Purpose of the course unit					
The main objectives are: a) to develop analytical					
b) to acquire the necessary programming skills	in Matlab for the development of statist	ical models.			
Learning outcomes of the course unit	Teaching methods	Assessment methods			
(learning					
outcomes of the programme)					
The ability to read and understand time series	Detailed and careful step-by-step ex-	Open questions during the			
literature. (1.2)	planation of the material during lec-	exams and empirical project.			
The ability to design and carry out appropriate	tures and seminars, self-study of the-				
econometric analysis of time series data. (2.2)	oretical material and completion of				
The ability to write code for any of the time	an empirical project under the super-				
series models discussed. (3.4)	vision of the lecturer.				
The ability to work in a team to carry out an					
empirical project (4.1).					

		C	onta	ct / I	ndiv	idua	l work:	time a	nd assignments
Content	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
 Introduction What is Time Series Statistics and what is it good for? Course Overview 	3						3	8	Reading scientific literature, solving problems at home, preparing for quizzes, learning to use statistical software, and

Basics (Difference Equations, Lag Operators, Matrix Algebra)						completing the empirical project.
Univariate stationary processes: Stationarity Ergodicity Wold Representation Theorem, invertibility autoregressive (AR) processes; moving average (MA) processes; mixed (ARMA) processes; impulse response functions estimation of AR, MA and ARMA models; forecasting;	6	3		9	26	Reading scientific literature, solving problems at home, preparing for quizzes, learning to use statistical software, and completing the empirical project.
Multivariate processes: VAR process stability conditions lag length selection Granger Causality impulse response functions identification variance decomposition forecasting	9	3		12	26	Reading scientific literature, solving problems at home, preparing for quizzes, learning to use statistical software, and completing the empirical project.
Nonstationary processes (unit roods and cointegration:	6	3		9	26	Reading scientific literature, solving problems at home, preparing for quizzes, learning to use statistical software, and completing the empirical project.
Advanced topics (if time permits)	3			3	8	Reading scientific literature, solving problems at home, preparing for quizzes, learning to use statistical software, and completing the empirical project.
Total	27	9		36	94	

Assessment strategy	Weight %	Deadline	Assessment criteria
Empirical group project	30	Close to the end	The project will assess the practical skills acquired dur-
		of semester	ing tutorials. Students' assessment will be based on
			their successful handling and visualisation of data, in-
			terpretation of statistical techniques and results.
Multiple Choice Quizzes	4 x 5	Beginning/	In four multiple-choice quizzes, students will be re-
		middle/	quired to solve various empirical and theoretical prob-
		end of semester	lems.
Final exam	50	End of semester	Students will be asked to solve several empirical and
			theoretical problems. Students will be assessed on the
			accuracy and completeness of their answers. The final
			exam will test the material covered throughout the
			course.

Author (-s)	Publish-	Title	Issue no.	Publishing house
	ing year		or volume	or web link

Required reading							
Hamilton, James D.	1994	Time Series Analysis	1 st edition	Princeton University Press			
Cochrane, John	2005	Time Series for Macroeco- nomics and Finance		https://www.johnhcochrane. com/research-all/time-series- for-macroeconomics-and-fi- nance			
Stock, J. H. and M. W. Watson	2020	Introduction to Econometrics	4 th Edition	Pearson Education			
Cesa-Bianchi, A.	(N.d.).	A primer on vector autoregressions		https://raw.githubusercon- tent.com/ambropo/VAR- Toolbox/main/VAR_Pri- mer_Slides.pdf			
Recommended reading							
Lütkepohl, Helmut Krätzig, Markus (eds.)	2004	Applied Time Series Econometrics		Cambridge University Press			
Diebold, Francis X.	2017	Forecasting in Economics, Business, Finance and Beyond	Version 1	https://www.sas.up- enn.edu/~fdiebold/Teach- ing221/Forecasting.pdf			
Ramey, V. A.	2016	Macroeconomic shocks and their propagation. In Handbook of macroeconom- ics		https://econ- web.ucsd.edu/~vramey/re- search/Shocks_HOM_Rame y_published_corrected.pdf			