

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Instruments and methods in astrospectroscopy	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. Vidas Dobrovolskas	Faculty of Physics
Other(s): dr. Arūnas Kučinskas	

Study cycle	Type of the course unit (module)			
Second (Master)	Optional			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	Semester 1	Lithuanian/English

Requirements for students				
Prerequisites:	Additional requirements (if any):			
Astrophysics				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	64	76

Purpose of the course unit (module): programme competences to be developed

The purpose of this module is to get the student acquainted with different spectrographs, raw data reduction procedures and different spectroscopic databases, to investigate relations between observational data and theoretical models seeking to understand and explain processes taking place in stars.

understand and explain processes taking place in stars	•	
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods
	methods	
Ability to understand working principles of different	Problem teaching, autonomous	Assessmet of laboratory work,
spectrograps and their differences	work	written and oral examination
Ability to use modern spectroscopic databases for	Problem teaching, autonomous	Assessmet of laboratory work,
solution of astrophysical problems	work	written and oral examination
Ability to run independently all steps of	Problem teaching, autonomous	Assessmet of laboratory work,
spectroscopic data reduction and data preparation	work	written and oral examination
for scientific analysis		

			Cont	tact h	ours		_	Sel	lf-study work: time a assignments	nd
Content: breakdown of the topics	Lectures	Futorials	Seminars	Exercises	Laboratory work	Internship/work	-	Self-study hours	Assignments	
1. Spectra as source of information about physical properties of different astronomical objects.	4				4		8	8	Preparation laboratory work	of
2. Modern UV-IR spectrographs. Echelle spectrographs. Multi-object spectrographs. Modern spectroscopic data archives.	4				16		20	24	Preparation laboratory work	of
3. Procedures of spectroscopic data reduction.	4				16		20	24	Preparation laboratory work	of
4. Methods of spectroscopic analysis of stellar atmospheres.	4				12		16	20	Preparation laboratory work	of
Total	16				48		64	76		

Assessment strategy	Weight,	Deadline	Assessment criteria
	%		
Examination	50	During the	Understanding of the main topics of the module
		exam session	
Laboratory work	50	Presentation	Understanding of the main astrophysical phenomena, processes
		during the final and their interaction which was discussed during lab	
		lecture of the	work, understanding of a wider astrophysical context in relation
		module	to the module topic.

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and ho or web link
Compulsary reading				
Gray, D.F.	2005	The Observation and Analysis of Stellar Photospheres		Cambridge University Pre
Optional reading				
Appenzeller, I.	2013	Introduction to Astronomical Spectroscopy		Cambridge University Pro