COURSE UNIT DESCRIPTION

Course unit title	
Organic Chemistry I	

rganic Chemistry, Vilnius University

Cycle	Type of the course unit
First	

Mode of delivery	Period of delivery	Language of instruction
Face to face	Autumn	English

Prerequisites and co-requisites

General chemistry (prerequisites), Quantum chemistry (co-requisites).

Number of credits	Student's total workload	Contact hours	Self-study hours
10	264	64	200

Programme Learning Outcomes to be developed.

A1. will apply appropriate terminology, nomenclature, units of measurement used in describing chemical substances and their structure.

A3. will characterise the main reactions of inorganic, organic and biologically active substances.

A7. will be able to explain physical phenomena and apply them for the examination of chemical substances.

B3. will choose and compare the most appropriate materials and reaction conditions to achieve a specific goal

B5. will synthesize materials using common methods; will describe various methods of synthesis.

B6. will work with chemicals safely.

B8. will be able to conduct standard laboratory procedures and use laboratory equipment.

C1. will apply theoretical knowledge in solving quantitative and qualitative problems of both familiar and unfamiliar nature.

C2. will plan problem-solving strategies.

C3. will evaluate and mathematically process the data.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
	Lectures;	

After successful completion of this course student should be	Individual	One midterm
able to:	problem	exam (multiple
• Draw Lewis structures of organic compounds and calculate	solving;	choice tasks,
formal charges;	Problem solving	short answer
• Draw possible resonance structures for neutral and charged	(tutoriala):	and open
organic species. Draw resonance hybride structures.	(tutoriais),	allswei tasks).
• Identify functional groups in organic molecules;	, Textbook	
• Predict the polarity, solubility and other physical properties	reading	
of organic molecules;	reading.	Final exam
• Predict the geometry of organic molecules;		(writing
• Name organic compounds;		chemical
• Draw step-by-step reaction mechanisms for most of organic		reactions and
reactions;		their
• Assess the stability of reactive intermediates;		mechanism,
• Identify the stereogenic atoms and name them according to		rational
R,S-nomenclature;		explanation of
• Determine the most stable isomers of unsaturated organic		the reaction
molecules;		outcome based
• Compare the stability of conformers;		on the reaction
• Explain the stereochemical outcome of organic reactions;		mechanism,
• Explain the regioselectivity of organic reactions;		identification
• Identify nucleophilic and electrophilic atoms in organic		of product's
molecules and predict their reactivity;		stereochemistr
• Write the reaction mechanisms using the notation of		y).
electron pair movement;		
• Propose the retrosynthetic plan for given organic		
compound;		
• Prepare and present laboratory work report;		
• Synthesize organic molecules and assess their purity;		
• Read chemical text in English;		

	Con	Contact work hours					Time and tasks of self- study		
Topics	Lectures	Consultations	Seminars	Tutorials	Laboratory work	Total contact hours	Self-study	Tasks	
1. Introduction. Course objectives.	2								
History of organic chemistry.									
2. Structure and Bonding. Lewis	2		1					Textbook reading.	
Structures. Resonance.								Problem solving.	
Determining Molecular Shape.									
Drawing Organic Structures.									
Hybridization. Bond Length and									
Bond Strength. Electronegativity									

and Bond Polarity. Polarity of Molecules					
3. Acids and Bases. Brønsted– Lowry Acids and Bases. Reactions of Brønsted– Lowry Acids and Bases. Acid Strength and pKa. Predicting the Outcome of Acid–Base Reactions. Factors That Determine Acid Strength. Common Acids and Bases. Lewis Acids and Bases	2	1			Textbook reading. Problem solving. Preparation of laboratory work reports.
4. Functional Groups . An Overview of Functional Groups. Intermolecular Forces. Physical Properties. Functional Groups and Reactivity	2	1			Textbookreading.Problemsolving.Preparationoflaboratoryworkreports.
 5. Alkanes. Alkanes—An Introduction. Cycloalkanes. An Introduction to Nomenclature. Naming Alkanes. Naming Cycloalkanes. Common Names. Physical Properties of Alkanes. Conformations of Acyclic Alkanes—Ethane. Conformations of Butane. An Introduction to Cycloalkanes. Cyclohexane. Substituted Cycloalkanes. Radical halogenation 	4	1			Textbook reading. Problem solving. Preparation of laboratory work reports.
6. Stereochemistry . The Two Major Classes of Isomers. Chiral and Achiral Molecules. Stereogenic Centers. Stereogenic Centers in Cyclic Compounds. Labeling Stereogenic Centers with R or S. Diastereomers. Meso Compounds. R and S Assignments in Compounds with Two or More Stereogenic Centers. Disubstituted Cycloalkanes	4	1			Textbook reading. Problem solving.

7. Understanding Organic Reactions. Writing Equations for Organic Reactions. Kinds of Organic Reactions. Bond Breaking and Bond Making. Bond Dissociation Energy. Thermodynamics. Enthalpy and Entropy. Energy Diagrams. Energy Diagram for a Two-Step Reaction Mechanism. Kinetics	2	1			Textbook reading. Problem solving.
8. Alkyl Halides and Nucleophilic Substitution. Introduction to Alkyl	4	2			Textbook reading. Problem solving. Preparation of
 Halides. Nomenclature. Physical Properties. Interesting Alkyl Halides. The Polar Carbon– Halogen Bond. General Features of Nucleophilic Substitution. The Leaving Group. The Nucleophile. Possible Mechanisms for Nucleophilic Substitution. Two Mechanisms for Nucleophilic Substitution. The SN2 Mechanism. 					laboratory work reports.
Application: Useful SN2 Reactions. The SN1 Mechanism. Carbocation Stability. The Hammond Postulate. When Is the Mechanism SN1 or SN2? Vinyl Halides and Aryl Halides					
 9. Alkyl Halides and Elimination Reactions. General Features of Elimination. Alkenes—The Products of Elimination Reactions. The Mechanisms of Elimination. The E2 Mechanism. The Zaitsev Rule. The E1 Mechanism 8.7 SN1 and E1 Reactions. Stereochemistry of the E2 Reaction. When Is the Mechanism E1 or E2? E2 Reactions and Alkyne Synthesis. When Is the Reaction SN1, SN2, E1, or E2? 	4	1			Textbook reading. Problem solving.

10. Alcohols, Ethers, and Epoxides. Introduction. Structure	4	1			Textbook reading. Problem solving.
and Bonding. Nomenclature.					6
Physical Properties. Interesting					
Alcohols, Ethers, and Epoxides.					
Preparation of Alcohols, Ethers,					
and Epoxides. General Features-					
Reactions of Alcohols, Ethers, and Epoxides. Dehydration of Alcohols to Alkenes. Carbocation Rearrangements. Dehydration Using POC13 and Pyridine. Conversion of Alcohols to Alkyl					
Halides with HX. Conversion of					
Alcohols to Alkyl Halides with SOCl2 and PBr3. Tosylate— Another Good Leaving Group. Reaction of Ethers with Strong Acid. Reactions of Epoxides					
 11. Alkenes. Introduction. Calculating Degrees of Unsaturation. Nomenclature. Physical Properties. Interesting Alkenes. Lipids. Preparation of Alkenes. Introduction to Addition Reactions. Hydrohalogenation— Electrophilic Addition of HX. Markovnikov's Rule. Stereochemistry of Electrophilic Addition of HX. Hydration— Electrophilic Addition of Water. Halogenation—Addition of Halogen. Stereochemistry of Halogenation. Halohydrin Formation. Hydroboration— Oxidation 	4	1			Textbook reading. Problem solving. Preparation of laboratory work reports
12. Alkynes. Introduction.	2	1			Textbook reading.
Nomenclature. Physical Properties.					Froblem solving.
Interesting Alkynes. Preparation of					
Alkynes. Introduction to Alkyne					
Reactions. Addition of Hydrogen					

		1			
Halides. Addition of Halogen.					
Addition of Water. Hydroboration-					
Oxidation. Reaction of Acetylide					
Anions					
13. Oxidation and Reduction.	2	1			Textbook reading.
Introduction. Reducing Agents.					Problem solving.
Reduction of Alkenes. Application:					
Hydrogenation of Oils. Reduction					
of Alkynes. The Reduction of Polar					
C–X σ Bonds. Oxidizing Agents.					
Epoxidation. Dihydroxylation.					
Oxidative Cleavage of Alkenes.					
Oxidative Cleavage of Alkynes.					
Oxidation of Alcohols					
14. Conjugation, Resonance, and	4	1			Textbook reading.
Dienes . Conjugation. Resonance					Problem solving. Preparation of
and Allylic Carbocations. Common					laboratory work
Examples of Resonance. The					reports
Resonance Hybrid. Electron					
Delocalization, Hybridization, and					
Geometry. Conjugated Dienes.					
The Carbon Carbon – Dand					
Longth in 1.3 Putodiono Stability					
of Conjugated Dianas					
Electrophilic Addition: 1.2 Versus					
1.4-Addition Kinetic Versus					
Thermodynamic Droducts The					
Di la Alla Di vi Gi in					
Diels-Alder Reaction. Specific					
Rules Governing the Diels–Alder Reaction (endo rule).					
15. Benzene and Aromatic	4	1			Textbook reading.
Structure of Ponzono					Problem solving. Preparation of
Nomenclature of Benzene					laboratory work
Derivatives. Interesting Aromatic					reports
Compounds Renzene's Unusual					
Stability The Criterio for					
Aromaticity Hückel's Pulo					
Examples of Aromatic					
Compounds. Electrophilic					

Total	48	16			
Nomenclature. Physical Properties. Interesting Carboxylic Acids. Aspirin, Arachidonic Acid, and Prostaglandins. Preparation of Carboxylic Acids. Reactions of Carboxylic Acids—General Features. Carboxylic Acids— Strong Organic Brønsted–Lowry Acids. Inductive Effects in Aliphatic Carboxylic Acids. Substituted Benzoic Acids. Sulfonic Acids					reports
16. Carboxylic Acids and the Acidity of the O–H Bond . Structure and Bonding.	2	1			Textbook reading. Problem solving. Preparation of laboratory work
Substitution. The General Mechanism. Halogenation.Nitration and Sulfonation. Friedel–Crafts Alkylation and Friedel–Crafts Acylation. Substituted Benzenes. Electrophilic Aromatic Substitution of Substituted Benzenes. Why Substituents Activate or Deactivate a Benzene Ring. Orientation Effects in Substituted Benzenes. Limitations on Electrophilic Substituted Benzenes. Disubstituted Benzenes. Disubstituted Benzenes. Synthesis of Benzene Derivatives. Halogenation of Alkyl Benzenes. Oxidation and Reduction of Substituted Benzenes	2	1			Textbook reading.
Aromatic Substitution.					

Assesment strategy	Weig	Assessmen	Assessment criteria		
	ht %	t period			
Mid-term exam (1 time)	40%	November	Open answer questions.		
Final Exam	50%	January	Open answer questions.		

Reading list

Author	Year of	Title	Publisher	Number of
	publ.			volumes in the

				library of faculty				
Main reading list								
T. W. G. Solomons, C.	2000,	Organic Chemistry	Wiley	71				
B. Fryhle	2004,							
	2008							
J. McMurry	2003	Organic Chemistry	Brooks/Cole	16				
	2004							
Additional reading list								
J. Clayden, N.	2007	Organic Chemistry	Oxford University	14				
Greeves, S. Warren, P.			Press					
Wothers								