

COURSE UNIT (MODULE) DESCRIPTION

Artificial intelligence

Code

Annotation

This course is aimed at students of physics and other physical sciences interested in advanced systems of information technologies, looking to find out mathematical principles and implementation algorithms behind them. The course material will discuss social, scientific and technological concepts of artificial intelligence (AI), present the most popular AI-related techniques (such as big data analysis, machine learning, logical reasoning and natural systems' modeling) and their applications in problem solving/ planning, robotics, computer vision and natural language processing. The course is developed with emphasis on practical programming exercises of both model and realistic applications.

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Dr. Stepas Toliautas	Faculty of Physics

Study cycle	Type of the course unit (module)
Second cycle (master studies)	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Contact (on-site) teaching	3rd (autumn) semester	Lithuanian, English

Requirements for students							
Prerequisites: Additional requirements (if any):							
programming (practical skills are critical),	none						
calculus and probability theory (bachelor level)							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140 hours	64	76

Purpose of the course unit (module): programme competences to be developed									
To familiarize students with the principles and algorithms used in advanced information-processing and problem-solving									
systems (rational agents); to deepen programming skills needed to create programs that control or perform tasks given to									
such systems; to acquire competences of formulation and solving of naturally arising interdisciplinary problems in physical									
sciences and technology.									
Learning outcomes of the course unit (module)	Learning outcomes of the course unit (module) Teaching and learning Assessment methods								
methods									
Students will learn programming principles and	Students will learn programming principles and Lectures, case studies, exercises								
techniques used to solve various problems incorpo-	techniques used to solve various problems incorpo- and homework problems written exam (open questions)								
rating uncertainty, knowledge acquisition and need									
for imperfect decisions in areas of information tech-									
nology, engineering, natural sciences etc.									
Students are expected to apply presented techniques Code reviews, homework Solutions to programming tasks,									
to solve typical model problems in given areas, to problems, research project research presentation									
assess limitations of created or provided solutions	(programming and write-up)								
and their applicability to real-world cases									

			Con	tact h	ours			Se	lf-study work: time and assignments
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. AI context. History of defining field of artificial intelligence. AI research: brain machinery, knowle-dge-based, results-oriented. Concept of rational agent	2		2				4	4	Python primer
 and its (work-)environment. AI success stories. 2. Problem solving by search. Prerequisites for searching. Search algorithm, implementations and complexity. Blind and informed search algorithms. Path costs, heuristic functions. Local search and 	4		4				8	6	
 search in continuous parameter spaces. <i>Constraint-satisfaction problems</i>. 3. Bayesian networks. Partially observable states. Models of probabilistic relations. Bayes theorem. 	2		2				4	4	
 Probabilistic inference in Bayesian networks by enumeration and sampling. 4. Machine learning. Knowledge acquisition task. Supervised learning: classification, regression. Data 	4		4				8	8	
smoothing and regulatization. Cross-validation of learning outcomes. Unsupervised learning: <i>k</i> -means, expectation maximization, affinity-based methods (principal component analysis). <i>Decision trees</i> . <i>Learning in artificial neural networks</i> .									
5. Logic and planning. Formal logic: Boolean, first order logic. Planning in partially observable environment: belief states, prediction-update cycle. Classical planning concepts and extensions. Planning software, <i>PDDL. Situation calculus.</i> <i>Knowledge representation theory. Fuzzy logic.</i>	2		2				4	6	Homework assignments
 6. Utility. Types of uncertainty. Uncertainty of actions. Markov decision process, utility function, execution (action) policy. Utility by value iteration. Reinforcement learning: temporal difference, Q-learning, generalization, exploration vs. exploitation. 	4		4				8	8	Research project
7. Decisions with multiple agents. Games as environment models. Single-player and zero-sum multiplayer game. Adversarial search: <i>min-max</i> , pruning, evaluation functions, stochastic games. Game theory: dominant and mixed strategies, Nash equilibrium, Pareto optimum. Inverse game theory: truth-revealing rules, auctions.	4		4				8	6	
8. Computer vision. Formation of two-dimensional images: light collection by pinhole and lens, perspective projection, invariant transform. Image elements: pixels, edges, corners, unique signatures. Image detection: edge filters, Harris corner detector. Depth perception and reconstruction. Stereoscopic images, correspondence using disparity maps and alignment. Structure from motion equations.	4		4				8	8	
 9. Robotics. Localization problem: hidden Markov models and particle filters. Monte Carlo localization. 	2		2				4	6	

Sensors, actuators, robotic movement planning.							
10. Natural language processing. Probabilistic	2	2			4	4	
language models (n-grams) and extensions: frequ-							
ency analysis, semantic classification (phrasing).							
Segmentation and auto-correcting tasks. Lexical							
language models: parsing, context-free grammars.							
Machine translation. Speech recognition.							
11. Information in natural systems. Structure of	2	2			4	8	Oral report
neuron, biological and artificial neuron models.							
Artificial neural networks: back-propagation, hidden							
layers, Hopfield (associative) networks. Genetic							
algorithms: selection, crossover, mutation. Evolution							
functions: cellular automata, fractals.							
12. Course review before examination.						8	
Total	32		32		64	76	

Assessment strategy	Weight,	Deadline	Assessment criteria				
	%						
Homework exercises	40 %	2–3 weeks	For each exercise: correct solution – 1 point, partial				
		after each	solution -0.5 point, incorrect/ no solution -0 points.				
		assignment	Final grade is a sum of individual exercise grades.				
Oral report on a given subject	20 % *	Special lecture	Report: clear presentation – 2 points, weak argumentation –				
and code presentation		/ seminar	1 point, no report -0 points.				
			Assignment: correct solution – 2 points, partial solution –				
			1 point, incorrect/ no solution -0 points.				
Research project	40 % *	Week 16	<i>Code</i> : correct, efficient and clear solution – 2 points, partial				
(programming, write-up and			or inept solution -1 point, incorrect/ no solution -0 points.				
presentation)			Write-up and presentation: problem context, narrowing/				
			interpretation and means of proposed solution (1 point),				
			test choices, results and analysis (1 point).				
Written exam	30 %	Exam period	Open questions.				
			Final grade is a percentage of correct answers.				
	* Coursework-based grade is a sum of grades for all completed assignments (rows 1–3).						
Examination-based grade is a sur	Examination-based grade is a sum of homework grades (40 %), average of individual assignments (rows 2–3, 30 %)						
and grade of the final exam (30 %).							

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
S. J. Russell, P. Norvig	2010	Artificial Intelligence: A Modern Approach	3rd edition	Prentice Hall, Upper Saddle River, NJ
T. Munakata	2008	Fundamentals of the New Artificial Intelligence	2nd edition	Springer-Verlag, London
Optional reading				
M. Lungarella, F. Iida, J. Bongard, R. Pfeifer (Eds.)	2007	50 Years of Artificial Intelligence: Essays		Springer-Verlag, Berlin/ Heidelberg
J. van Benthem, J. van Eijck, H. van Ditmarsch, J. Jaspars	2016	Logic in Action (open access course)		www.logicinaction.org
S. Sumathi, T. Hamsapriya, P. Surekha	2008	Evolutionary Intelligence		Springer-Verlag, Berlin/ Heidelberg