

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
General physics III (Optics)	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Doc. Aidas Matijošius	VU FF Department of Quantum Electronics
Other(s):	

Study cycle	Type of the course unit (module)				
First	Compulsory				

Mode of delivery	Period when the course unit	Language(s) of instruction
	(module) is delivered	
Auditorium	3 semester (autumn)	Lithuanian/English

Requirements for students								
Prerequisites:	Additional requirements (if any):							
Mathematics I, Mathematics II (linear algebra and								
geometry, mathematical analysis, differential equations,								
General Physics I								

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	149	80	69

Purpose of the course unit (module): programme competences to be developed								
This is a shorten optics an atomic physics course with an intend to give the basic of theoretical and practical								
knowledge for the students of the main optics chap	ters like geometrical optics, polari	zation, photometry,						
interference, diffraction in order for the future (adv	anced) studies, understand the pr	inciples of various optical						
devices.								
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
	methods							
By the end of the course the students are	Teaching modes: lectures with	Final mark consists of practical						
expected to be able to:	demonstrations, practical,	mark (mid-term test) (25%),						
explain optical processes around us (1.1, 3.1)	laboratory work mark (25%)							
describe electromagnetic waves, their interaction	consultations. Students could	and exam or optical project						
and interaction with matter(1.1, 3.1)	arrange simple optical projects	presentation mark (50%).						
understand light polarization and explain the	by themselves.							
polarization methods (1.1)	Methods: problem teaching.							
explain the light absorption, reflection, emission	Laboratory work defense.							
and scattering (1.2, 3.1)								
understand and analyze various interference								
patterns (1.2, 3.1)								
evaluate the diffraction pattern appearance								
conditions (1.2, 3.1)								
understand the principles of holography (1.1)								
explain the basic of laser physics (2.1)								

Students will be able to apply general physics knowledge to practical situations (1.1, 3.1)

	Contact hours					Sel	f-study work: time and		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
1. One-dimensional, harmonic waves. Phase and phase velocity. The complex representation. Plane, spherical and cylindrical waves. The three- dimensional differential wave equation. Scalar and vectorial waves. Electromagnetic wave, wave equation.	3			2			5	2	In lectures students gain theoretical knowledge about the topic, while skills are developed by solving selective exercises.
2. Energy and momentum of radiation. The addition of waves of the same frequency. The algebraic method. Standing waves. The addition of waves of different frequency, beats, phase and group velocity. Anharmonic periodic waves, Fourier series. Coherence duration and length.	3			2			5	2	In lectures students gain theoretical knowledge about the topic, while skills are developed by solving selective exercises.
3. Principles of interference. Constructive and destructive interference. Conditions for interference. Wavefront-splitting interferometers, two beams interference in a thin-film. ringes of equal inclination and equal thickness. The Newton's rings. Mirrored interferometers. Multiple beam interference. The Fabry-Perot interferometer, chromatic resolving power, free spectral range.	5			2			7	2	In lectures students gain theoretical knowledge about the topic, while skills are developed by solving selective exercises.
4. Diffraction. The Huygens-Fresnel principle. Fraunhofer and Fresnel diffractions, the single slit, many slits, the rectangular and the circular apertures. Resolution of imaging systems, diffraction grating, angular dispersion, chromatic resolving power, limit of resolution, free spectral range.	6			2			8	2	In lectures students gain theoretical knowledge about the topic, while skills are developed by solving selective exercises.
5. Light polarization. Linear, circular and elliptical polarization. Natural light. Light double refraction, birefringent crystals, polarizers. Fresnel equations.	5			2			7	2	In lectures students gain theoretical knowledge about the topic, while skills are developed by solving selective exercises.
6. Light dispersion. The electromagnetic spectrum. Light absorption. The rainbow theory. Colors (RGB, CMYK) conception, subtraction, addition. Light scattering. Rayleigh and Mie scattering.	4						4	2	In lectures students gain theoretical knowledge about the topic, while skills are developed by solving selective exercises.
7. Laser, population inversion, optical pumping.	6	[6	2	In lectures students

optical resonant ca	avity, longitudinal and								gain theoretical
transverse cavity modes. Holography, transmission									knowledge about the
and reflection hologram	S.								topic, while skills are
									developed by solving
									selective exercises.
Laboratory works -	(randomly selected 6					32	32	30	
laboratory works) from	the list:								
1. Parame	ters of the optical systems.								
2. Aberrat	ions of optical systems.								
3. Investig	ation of Fresnel lens.								
4. Microsc	ope.								
5. Parame	ters of prism.								
6. Investig	ation of interference with								
double prism.									
7. Investig	ation of interference with								
double lens.									
8. Air refr	active index measurement								
with Rayleigh interferon	neter.								
9. Liquid	refractive index								
measurement with Abe	interferometer.								
10. Fabry-P	erot interferometer.								
11. Investig	ation of chromatic								
polarization.									
12. Spatial f	iltering.								
13. Investig	ation of interference filter.								
14. Optical	thickness measurement of								
a thin-film.									
15. Investig	ation of light diffraction.								
16. Diffracti	on grating.								
17. Investig	ation of light reflection.								
18. Brewste	r angle measurement.								
19. Polarize	d light investigation.								
20. Investig	ation of polarization plane								
rotation with a polarime	eter.								
21. Faraday	effect.								
22. Polarisc	ope investigations.								
23. Pockels	effect.								
Mid-term test					2		2	10	
Final test			4				4	15	
	Total	32	4	1	12	32	80	69	

Assessment strategy	Weigh	Deadline	Assessment criteria
	t,%		
Laboratory work	25	End of	The completeness of the laboratory work, correctness of
		semester	conclusions, answers to theoretical questions.
Mid-term test	25	Semester	Mastered half course knowledge (%)
			Mastered full course knowledge (%)
Final exam or optical project	50	End of session	
presentation			

Author	Year of public ation	Title	lssue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				

	1990	Optics	Addison-Wesley, Reading
E.Hecht			
V.Šalna	2004	Optika	Vilnius
	1990	Optics	Addison-Wesley, Reading
E.Hecht			
Optional reading			
	1993	Introduction to optics	New Jersey
F.Pedrotti, L.Pedrotti,			
	1936	Bendroji fizika III	Vilnius
P.Brazdžiūnas			