

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Optical spectroscopy	

Lecturer(s)	Department(s) where the course unit (module) is delivered				
Coordinator: Prof. Dr. (HP) Valdas Šablinskas	Faculty of Physics				
Other(s): Martynas Velička					

Study cycle	Type of the course unit (module)			
First	Optional			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
	V (autumn) semester	Lithuanian/English

Requirements for students						
Prerequisites:	Additional requirements (if any):					
Knowledge of general physics, solid-state physics,						
background of chemistry						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	132	64	66

Purpose of the course unit (module): programme competences to be developed									
To obtain theoretical knowledge of spectroscopy and learn to use optical spectroscopy methods in experiments,									
such as characterization of physical/chemical objects of interest, along with learning to analyse and interpret									
scientific data critically	scientific data critically								
Learning outcomes of the course unit (module) Teaching and learning Assessment method									
	methods								
Be able to apply the knowledge of theoretical	Lectures, optical experiments	Tests (written) and							
optics in understanding spectroscopic data or in	in different scientific	questions/discussion during							
finding possible solutions of the problems (1.2,	laboratories	lectures							
1.3)									
Student will be trained to plan, organize and	Reports	Evaluation of the reports							
solve the given problems and provide a									
summary of main results (2.1)									
Student will be able to understand english	Reports	Evaluation of the reports							
literature of the proposed topic and to discuss									
with the specialists of the field (4.1)									
Student will manage to find, understand and	Lectures, initial phase of	Analysis of the particular case,							
apply the knowledge from the internet sources, report preparation questions/discussion du									
publications and literature, and to critically lectures									
compare the information obtained from									
different sources, analyse and organize it. (2.2)									

Student will be able to apply theoretical knowledge to solve various problems arising in practice (3.1, 3.2)	Optical experiments in different scientific laboratories, report presentation	Evaluation of the reports
Will be able to apply the knowledge in optics along with practical and engineering skills to understand the principles of optical system operation and analysis, and to implement spectroscopic set-ups (3.1)	Lectures, optical experiments in different scientific laboratories	Exam, evaluation of the work in the laboratory
Will achieve the knowledge in semiconductor physics interpreting the obtained spectroscopic data (3.4)	Optical experiments in different scientific laboratories, reports	Evaluation of the reports

		Contact hours Self-stu							study work: time and assignments
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction into Spectroscopy. Electromagnetic wave spectrum (UV-VIS and IR spectroscopy), main elements of spectrometer. Light sources, detectors: types, spectral range of operation. Grating, prism, beam focusing elements, filters. Monochromator: principle of operation, focal length, numerical aperture, bandpass, resolution.	2				2		4	11	Study of lecture material. Writing and presentation of 2 reports given from 1- 6 topics (self-study hours in 1-6 rows is divided proportionally).
2. Reflectance, Transmittance. Absorption type spectroscopy. Absorption coefficient. Examples of spectra.	7				7		14	11	Participation in the experimental measurements in CPST laboratory. Study of lecture material. Writing and presentation of 2 reports given from various subtopics.
3. Emission type spectroscopy. Types of luminescence (photo-, electro-, magneto-, etc.). Examples and analysis of spectra.	7				7		14	11	Participation in the experimental measurements in CPST laboratory. Study of lecture material. Writing and presentation of 2 reports given from various subtopics.
 FTIR spectroscopy. Michelson interferometer. Fourier transformation. Signal averaging. Examples of spectra. 	7				7		14	11	Participation in the experimental measurements in CPST laboratory. Study of lecture material. Writing and presentation of

						2 reports given from various subtopics.
5. Scattering spectroscopy. Particle and electromagnetic wave ratio. Rayleigh scattering. Brillouin scattering. Raman scattering. Examples of spectra.	7		7	14	11	Participation in the experimental measurements in CPST laboratory. Study of lecture material. Writing and presentation of 2 reports given from various subtopics.
6. Sensitive methods of optical spectroscopy in Lithuania: modulation spectroscopy (photoreflectance, electroreflectance, wavelength modulated reflectance), spectroscopic ellipsometry, SERS spectroscopy. Examples of spectra.	2		2	4	11	Participation in the experimental measurements in CPST laboratory. Study of lecture material. Writing and presentation of 2 reports given from various subtopics.
Total	3 2		3 2	64	66	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Activity in lectures and report rating	40	All course	Activity in lectures (asking questions, participation in discussions), writing and presentation of 2 reports (time for presentation and discussion 20+10 min at the end of lectures).
Tests	20	Middle and the end of course	Two tests, each of 10 questions. Total 10 points. Correct answer: 1 point, wrong answer: -1 point, no answer: 0 point. Negative evaluation is multiplied by weight factor and subtracted from the final mark. In case the test result is less or equal to 0, it is obligatory to write and present the additional report.
Exam (written form)	40	During the exam session	Written report on a given subtopic of the lecture material (duration ~2 hours), discussions with examinee. Evaluation of the completeness, correctness of the answers, quantity of errors.

Author	Year of public ation	Title	lssue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Mark Fox	2012	Optical properties of solids.		Oxford : Oxford University
		2nd ed.		Press, 2012. xvi, 396 p.
G. Gauglitz and T. Vo-Dinh	2003	Handbook of spectroscopy.		Weinheim : Wiley-VCH,
(Eds.)		[electronic resource]		2003. xxxii, 538 p.
				DOI: 10.1002/3527602305
Optional reading				
V. Šablinskas, J. Čeponkus	2012	Modernioji virpesinė		
		spektroskopija		
Peter Y. Yu,	2010	Fundamentals of semi-		Berlin : Springer, 2010. xx,
Manuel Cardona		conductors: physics and		775 р.
		materials properties		