

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Robotic System Control Algorithms	

Academic staff	Core academic unit(s)
Coordinating: Assoc. prof. dr. Gintautas Daunys	Šiauliai Academy
Other:	

Study cycle	Type of the course unit	
First cycle	Mandatory / Individual studies	

Mode of delivery	Semester or period when it is delivered	Language of instruction
Face-to-face	5 th semester	Lithuanian / English

Requisites				
Prerequisites:	Co-requisites (if relevant):			

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	133	56	77

Purpose of the course unit								
Understand robot control algorithms and be	e able to apply them.							
Learning outcomes of the course unit								
Knowledge of robot control algorithms	Traditional and interactive lectures, Python programing	Written exam, assignments (laboratory works),						
Ability to implement robot control algorithms in software.	Interactive lectures, Python programing	Assignments (laboratory works),						
Ability to tune parameters of robot control algorithms.	Interactive lectures, Python programing.	Assignments (laboratory works),						
Ability to train robot control algorithms using deep learning	Interactive lectures, Python programing	Written exam, assignments (laboratory works),						
Ability individually study newest information about robot control algorithms and evaluate them	Individual reading and analysis, Python programing	Written exam, assignments (laboratory works)						

			Co	ntact	hours			Indiv	vidual work: time and assignments
Content	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
1. Robots kinematics	4				2		6	4	Writing programs individually using Python.
2. Robot dynamics	4				2		6	6	Writing programs individually using Python.
3. Classical control theory	4				4		8	6	Writing programs individually using Python.
4. Markov decision process	2				8		10	6	Individual reading. Writing programs individually using Python.
5. Reinforcement learning using deep learning	6				12		18	8	Individual reading. Writing programs individually using Python.
6. Localization algorithms	4				0		4	12	Individual reading.
7. Motion planning algorithms	4				0		4	12	Writing programs individually using Python and Pytorch.
8. Preparation for exam	0				0		0	23	Individual reading.
Total	28				28		56	77	

Assessment strategy	Weight %	Deadline	Assessment criteria	
1. Programming	10%	Week 6	Assessment by grade in 10 point system. Grade depends on:	
assignments for topics 1-2			efficiency of code, completeness of performed tests, clarity	
2. Programming	10%	Week 8		
assignments for topics 3			are obligatory. The cumulative score is calculated only	
3. Programming	10%	Week 10	when all interim assignments have been evaluated.	
assignments for topics 4				
4. Programming	10 %	Week12		
assignments for topic 5				
5. Programming	10 %	Week14		
assignments for topics 6-7				
6. Exam	50%	During	Test with 10 open-ended questions. The value of each	
		Exam	question is 1 point.	
		Session		

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link
		F	Required reading	
Herath, & St-Onge, D.	2022	Foundations of Robotics		Springer
Tzafestas	2013	Introduction to Mobile Robot Control		Elsevier

Sutton R.,	2022	Reinforcement	http://www.incompleteideas.net/bool
Barto A.		Learning: An	e-book.html
		Introduction	
		Reco	nmended reading
Palanisamy,	2018	Hands-On	Packt Publishing Ltd
Praveen.		Intelligent Agents	
		with OpenAI	
		Gym: Your guide	
		to developing AI	
		agents using deep	
		reinforcement	
		learning.	
Stanford	2022	CS234.:	https://web.stanford.edu/class/cs234/
University		Reinforcement	dules.html
course website		Learning Winter	
		2022	
Other sources			
will be			
anounced			
during the first			
lecture.			