

Course description

Course title	Course code
Probability theory and mathematical statistics	

Lecturer	Department where the course is delivered
Prof. Jonas Šiaulys	Department of Mathematical Analysis
	Faculty of Mathematics and Informatics
	Naugarduko St. 24, LT-03225 Vilnius, Lithuania

Cycle	Type of course
Second	Compulsory

Mode of delivery	Semester or period when the course is delivered	Language of instruction
Face-to-face	1 st semester (Fall)	Lithuanian, English

Prerequisites and corequisites						
Prerequisites: Basic knowledge of mathematical analysis	Corequisites (if any):					
and probability theory.						

Number of ECTS credits	Student's workload	Contact hours	Individual work hours
10	250	96	154

Course objectives: program competences to be developed					
Acquaintance with the advanced concepts, methods, and problems of probability theory and mathematical statistics usable					
for theory and practice.					
Learning outcomes	I earning methods	Assessment methods			
At the end of the course a student should:	Learning methods	Assessment methods			
- Know the main objects of probability theory under					
consideration;					
- Have advanced insight into probability concepts such					
as a random element, expectation, conditional					
expectation, characteristic function, random walk,	Problematic lecture, case				
martingale;	analysis	Written exam			
- Have advanced insight into the main concepts of	analysis				
mathematical statistics such as a sample, parameter					
estimation, confidence intervals, linear regression;					
- Be able to analyze basic properties of the probability					
theory and mathematical statistics objects.					
- Be able to apply the statements of probability theory	Discussion lecture,				
and mathematical statistics;	concept maps,	Written exam			
- Be able to construct the proofs of various assertions	demonstration, case by	Witten exam			
from probability theory.	case analysis.				
- Be able to prove the particular statements of the	Debate, demonstration,	Presentation			
probability theory;	preparation of readiness	1 resentation			

- Be able to select suitable methods to solve various	
problems in probability theory through checking and	
critiquing;	
- Be able to select appropriate methods for particular	
statistical tasks.	

		Contact hours				Individual work hours and assignments	
Course content: breakdown of the course	Lectures	Practical training	Seminars	Consultations	Total contact hours	Individual work his	Assignments
Elementary probability theory	2	2			4	4	Study the first chapter of textbook [1], solve homework problems
Kolmogorov axioms, σ-algebra constructions in complex spaces.	2	2			4	6	Study §1 and §2 of the second chapter of textbook [1], solve homework problems
Introduction of probability measures on various measurable spaces.	2	2			4	6	Study §3 of the second chapter of textbook [1], solve homework problems
Random variables and random elements.	2	2			4	6	Study §4 and §5 of the second chapter of textbook [1], solve homework problems.
The expectation of a random variable and its properties	2	4			6	8	Solve the assigned exercises, repeat the expectation properties according to §6 of the second chapter of textbook [1].
Conditional expectations and their properties	2	4			6	8	Study §7 of the second chapter of textbook [1], solve homework problems
Transformations of random variables and random elements	2	2			4	6	Study §8 of the second chapter of textbook [1], solve homework problems.
Preparation and presentation of readiness			2	2	3	9	
The first midterm exam			2	1	3	15	Review the first part of the course.
Various kinds of convergence of sequences of random variables	2	2			4	6	Study §10 of the second chapter of textbook [1], solve homework problems.
Characteristic functions, the method of characteristic functions.	2	2			4	6	Study §12 of the second chapter and §3 of the third chapter of textbook [1], solve homework problems
Simple random walk	2	2			4	6	Study §9,10 of the first chapter of textbook [1],

									solve homework problems
Markov abains			2	2			4	6	Study \$12 of the first
			2	2			4	U	study §12 of the first
									chapter of textbook [1],
			2	-	1		4	6	solve nomework problems
Random walk on Markov c	hains		2	2			4	6	Study §12 of the first
									chapter and §2,3 of the last
									chapter of textbook [1],
									solve homework problems
Discrete time martingale	es, the m	ethod of	2	4			6	8	Study §1, §3 and §4 of the
martingales.									8th chapter of textbook
									[1], solve homework
									problems.
Population and sample,	random	sampling	2	2			4	4	Study §2.1-§2.3 of
characteristics									textbook [2], solve
									homework problems.
Order statistics of random s	sampling		2	2			4	4	Study §2.1 and §5.3 of
	1 8								textbook [2], solve
									homework problems.
Confidence intervals			2	2			4	4	Study 82.4 and 87.1-87.5
			-	-				-	of textbook [2] solve
									homework problems
Testing hypotheses			2	2			1	1	Study 82 A and 86 1-86 A
resting hypotheses			2	2			-	-	of taythook [2] solvo
									homework problems
Time and an and a sum	1.4		2	2			1	4	Studie \$5.4 and \$5.5 of
Linear regression and corre	elation		2	2			4	4	Study \$5.4 and \$5.5 of
									textbook [2], solve
			-	-	-			<u> </u>	homework problems.
Nonparametric tests			2	2			4	4	Study §6.5 of textbook [2],
									solve homework problems
Preparation and presentation	n of readin	ess			2	2	3	9	
The second midterm exam					2	1	3	15	Review the second part of
									the course.
		Total	38	44	8	6	96	154	
Assessment strategy	Weight	Time of	Cri	teria					
		assessme							
		nt							
General assessment strateg	y. A 10 po	int rating s	ystem	is applie	d. It is	possible	to get	40 point	s on the first midterm exam.
The same is possible on th	e second n	nidterm exa	am. Ad	lditional	20 poi	nts can	be colle	cted for	an individual or group self-
study presentation. All col	lected point	s are added	l and d	ivided b	y 10.				
The first midterm exam	40%	During	In t	this exar	n, stude	ents are	tested of	on the m	aterial from the first half of
		the	the	semeste	er. Typ	ically,	the example	m consi	sts of one easy theoretical
		semester	que	stion (5	points), one h	nard the	oretical	question (10 points), and a
			long multi-stage exercise (25 points). To answer an easy theoretica						answer an easy theoretical
			question, a student should formulate some definition theorem of						me definition, theorem, or
			explain some concept. The answer to this question is assessed strictly						
			the student knows an appropriate definition or concept (5 points): the						
			stu	dent doe	s not kn	ow the	appronr	iate defi	nition or concept (0 points)
			A hard theoretical question is the proof of some assertion known					some assertion known from	
				syllahus	Given	nroof i	s assess	ed in a s	tandard way: the student has
				startod	nrovin	o the a	tatemon	t (0 noi	ints): the statement remains
				roven	but the	studont	mado	a fow r	pauired correct stans of the
			nro	of $(1 A)$	nointe).	the as	sortion	has had	n proved with large defects
			(5)	6 nointe). the	nroof	of the o	tatomon	t was presented with minor
			daf	icionaia	$(7 2 \cdot)$	proof (the new	not of 4	he statement was presented
			aef	hout -	(/-0] 	-11	ine pro	noj UJ TI	and of the proof and full
1	1		without any defects, all important places of the proof are fully						

The second midterm	40%	At the	explained (9-10 points). A long multi-stage exercise usually consists of five parts. In each of these parts, a student needs to find some characteristic of the same discrete time risk model. Each part of the exercise is assessed in points from 0 to 5 in a standard way: the student has not tried to find the desired model characteristic (0 points); the student in search of the required characteristic has made several essential errors (1-2 points); while finding the desired characteristic, the student made a few minor, e.g., arithmetic, errors (3-4 points); the student found correctly the desired characteristic of the model, all calculations and derivations are correct and accurate (5 points).
exam	4070	end of the	the semester. The second midterm exam's composition and assessment
e Autori		semester	are similar to the composition and the assessment of the first midterm
			exam.
Presentation	20%	During the semester	At the beginning of the semester, all students individually receive a task for readiness. The task consists of a theoretical problem, a complicated exercise, or of a practical problem. Topics are coordinated with students. Most of the topics require reading supplementary material. When the agreed time comes, each student presents a task done in electronic form. Successfully completed tasks are presented during the seminars. One presentation takes approximately 15 minutes.

Author	Publication year	Title Volume and/or publicatio		Publication place and publisher
			number	
Required reading				
A.N Shiryaev	1996	Probability		Springer
Shao Jun	2003	Mathematical Statistics		Springer
Recommended reading				
V.V.Petrov	1995	Limit Theorems of		Clarendon Press, Oxford
		Probability Theory		
G. Grimmett,	2001	One Thousand Exercises in		Oxford University Press
D. Stirzaker		Probability		