

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Data mining	

Department(s) where the course unit (module) is delivered
Department of Human and Medical Genetics, Institute of
Biomedical Sciences, Faculty of Medicine, Vilnius University
Santariskiu str. 2, LT-08661
Department of Botany and genetics, Institute of Biosciences,
Life Sciences Center, Vilnius University
Saulėtekio al. 7, LT-10257

Study cycle	Type of the course unit (module)
Second cycle	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face, self-study	First semester	English
Lectures, seminars and practice		

Requirements for students				
Prerequisites:	Additional requirements (if any):			
English B2 level				
Linear algebra basics				
Programming basics				
UNIX/Linux basics				
Statistics				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	130	60	70

Purpose of the course unit (mo	dule): programme competences to	be developed						
The unit aims at providing the basic concepts of data mining, teaching the students how to epxlore relevant concepts and sources for further development through theoretical lectures, excercises and case studies. The unit is also oriented towards								
applying the data analysis concepts on real life biome	dical datasets.							
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
	methods							
Be able to work autonomously and as a part of a multidisciplinary team; act honestly and according to ethical obligations Comprehend advanced data processing and programming techniques; be able to apply technologies used in data mining and basic data	Exercises, course projects Lectures, exercises, seminars with case studies	Completion of practical assignments, oral and written presentation of course project Completion of practical assignments, oral and written presentation of course project						
handling hand basic data handling								
Be able perform practical calculations using modern high-performance open computing platformsLectures, exercises, seminars with case studiesCompletion of practical assignments, oral and writte presentation of course project								
Be able to analyse, manage and model data from the	Lectures, exercises, seminars	Completion of practical						

field of system biology	with case studies	assignments, oral and written
		presentation of course project
Be able select an appropriate modelling strategy for a given biological domain and problem	Lectures, exercises, seminars with case studies	Completion of practical assignments, oral and written presentation of course project
Be able to gather and analyse information on subjects related to system biology with a critical approach, and to carry out a technological watch	Lectures, exercises, seminars with case studies	Completion of practical assignments, oral and written presentation of course project

	Contact hours				Self	Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
Use of data mining in biomedical sciences. Technologies used in data mining, basic data handling: cleaning, integration, reduction. Outlier detection. Classification model selection and evaluation, bias-variance trade- off, over fitting, model evaluation by cross- validation. [VT]	6		• -	2			8	6	Data handling exercises:
Theory of statistical learning, linear modelling and parameter estimation, Lasso, regularization. [VT]	2		2	2			6	5	Exercises involving traditional statistical analysis of biomedical data, case study from selected papers
Supervised learning. Bayes rule. Fundamental state-of-the-art parametric linear and quadratic discriminant and non-parametric K nearest neighbours (KNN) and classification and decision tree (CART) classification methods. Introduction to kernel methods and Support Vector Machines. Multiple classifier systems. Mining frequent patterns. Classification model selection and evaluation, bias-variance trade- off, over fitting, model evaluation by cross- validation. [EP]	8		4	4			16	6	Classifier training, testing and validation exercises, case study from selected papers
Unsupervised learning: K-means, hierarchical clustering, PCA, multidimensional scaling. Assembly methods. [VT]	4			2			6	6	Unsupervised learning exercises, case study from selected papers
Deep learning introduction: artificial neural networks (ANN), Hebb rule (reinforcement learning). [EP]	4		4				8	6	Textbook study, computational exercises
Significant data mining applications in life sciences and biomedicine. [EP 50%, VT 50%]	6		6				12	6	Analysis of real- world biomedical datasets as part of data mining project, case studies review from selected papers
Course project. [VT]			4				4	35	A data mining project, presentation and discussion of results

	To	tal 30	20 10 60 70
Assessment strategy	Weight.%	Deadline	Assessment criteria
Oral discussion during a seminar lecture presenting a case study from selected papers	15	The final week	Students in groups of two analyse a provided article and presents the article overview (20 minutes for the article presentation – 10 minutes for each student followed by approximately 40 minutes discussion and questions).
			 Presentation must include: The main problem of the article Dataset presentation Methods in depth (highlight the methods presented in the course) 4) Results and their interpretation
			Maximum grade 10 consists of points distributed as follows: 2 points for the quality of presentation 2 points for the quality of visual material 2.5 points for explanation of the methods 2.5 points for explanation of results and interpretation questions 1 point for answers to questions
Data mining project	50	The final two lectures	 Written report consists of 2-3 pages; duration of presentation is 15 minutes; Project requirements outline: Same data set and analysis task will be given to each student Student selects 4 methods introduced in the course and applies them to analyse the provided data set Student compares results from different methods and selects the best method Student submits analysis code to github Project evaluation criteria: Figure describing the dataset Rationale for the chosen 4 methods Description of evidence supporting the best method for the given data analysis task. Maximum grade 10 points distributed as follows: points for quality of visual material 5 points for ability to answer questions
Exam	35		One open question (25%) and 10 multiple choice questions (75%)

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
J. Han	July 6, 2011	Data mining concepts and	ISBN 978-	Morgan Kaufmann
	-	techniques (Third edition)	9380931913	
T. Hastie et al.	April 12,	The Elements of Statistical	ISBN 978-	Springer; 2nd ed. 2009. Corr.
	2011	Learning	0387848570	7th printing 2013 edition
G. James et al.	2017	An Introduction to	ISBN 978-	http://www-
		Statistical Learning	1461471370	bcf.usc.edu/~gareth/ISL/

		with Applications in R		
Selected papers for case studies				
Optional reading				
Manning et al.	July 7,	Introduction to Information	ISBN 978-	Cambridge University Press;
	2008	Retrieval	0521865715	1 edition
Duda et al.	November	Pattern Classification	ISBN 978-	Wiley-Interscience; 2 edition
	9,2000		0471056690	
Goodfellow et al.	2016	Deep learning	ISBN	MIT Press
			9780262035613	