

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
NANO- AND MICRO-STRUCTURE TECHNOLOGIES	

Lecturers	Department(s) where the course unit (module) is delivered
Coordinator: Prof. M. Malinauskas	Faculty of Physics
Others: Dr. K. Genevičius, Dr. G. Zyla,	
Laboratory works:	
Dr. D. Ladika, J.R.A. E. Aleksandravičius	

Study cycle	Type of the course unit (module)			
First cycle	Optional			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction	
Lectures, seminars and laboratory works	VI (spring) semester	Lithuanian/English	

Requirements for students							
Prerequisites:	Additional requirements (if any):						
Knowledge of general physics, solid-state physics,							
growth technologies of semiconductors, background of							
chemistry							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	150	64	86

Purpose of the course unit (module): programme competences to be developed

Students will get familiar with the micro- and nano-structures, used materials and employed processing technologies. They will gain fundamentals of diverse nano-technologies including fabrication, characterization and applications. After the couse the students will have developed abilities to produce micro- and nano-structures, characterize their properties and evaluate functional performance.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Students will be able to understand the scientific literature published in English, and to accomplish experimental projects working in international teams (4.3).	Team discussion, debates	Presentation, theme
Students will be able to find and select the relevant scientific literature in the internet, scientific journals and handbooks, to learn and critically evaluate its content and systematically present (2.2)	Cross-discussion	Presentation, analysis of the particular case
Students will understand the principles of advanced technologies using the knowledge of general physics, semiconductors and chemistry.	Problem lectures, explaining	Oral questioning, written quiz

They will be able to apply it for creating		
functional micro-nano-prototypes (3.3, 3.4, 4.4)		
They will be able to perform standard laboratory	Project	Research work
work procedures, to synthesize compounds, to		
apply knowledge of chemistry in technological		
steps (2.3)		

			Cont	act h	ours			Self-	study work: time and assignments
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
Introduction to Nano- and Micro- Technologies	4		3					3	Preparation for the seminar, including information review,
Photopolymerization and UV Lithography	3		2					2	systematization, and repetition for presentation.
Electron Beam Lithography and Focussed Ion Beam Milling	3		2					2	Additional focus on discussion preparation and
4. Nanoimprint and Soft-Lithography	3		3					2	exam revision,
5. Light-/Laser-Based 3D Printing by Stereolithography	3		2		4			2	including laboratory work.
6. Light-/Laser-Based 3D Printing by Multi-Photon Lithography	3		3		4			2	
7. Materials for large area electronics	3		3					2	
Solubility and crosslinking, drop and dicoating, spin coating, inkjet printing	р 3		2					2	
9. Doctor blade, self-assembly, Langmuir-Blodgett technology, zone casting, soft lithography	3		2					2	
Fabrication of organic and hyrid solar cells and FET	4		3					3	
Tot	al 32		24		8		64	86	

Assessment strategy	Weight, %	Deadline	Assessment criteria
Laboratory work rating	20*	All	Preparation to answer theoretical questions, quantity of
		course	errors in circuit connection, the quality of the work description, ability to describe the results. Evaluation in 10 scores system, the final score is multiplied by the weight coefficient. * It is obligatory to finish all laboratory works.
Seminars rating	20	All	Ability to understand and accomplish the tasks during the
		course	seminars

Exam (written form)	60	During	3 open questions. Assessment of answer particularity,
		the exam	consistency and mistakes.
		session	

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading			T	
T. Baldacchini	2020	Three-Dimensional Microfabrication Using Two- Photon Polymerization	2nd. Ed.	https://doi.org/10.1016/C20 18-0-00278-9
G. Zyla, M. Farsari	2024	Frontiers of Laser-Based 3D Printing: A Perspective on Multi-Photon Lithography	Laser Photonics Rev 18 , 2301312	https://doi.org/10.1002/lpor .202301312
M. Caironi, YY. Noh	2015	Large area an flexible electronics		Wiley-VCH Verlag GmbH & Co., 592 p. (ISBN: 978-3527336395)
E. Skliutas, G. Merkininkaitė, S. Maruo, W. Zhang, W. Chen, W. Deng, J. Greer, G. von Freymann, M. Malinauskas	2025	Multiphoton 3D Lithography,	Nat. Rev. Meth. Primers, in press	
Optional reading				
H. Wang, W. Zhang, D. Ladika, H. Yu, D. Gailevicius, H. Wang, CF. Pan, P. Nair S, Y. Ke, T. Mori, J. Y. E. Chan, Q. Ruan, M. Farsari, M. Malinauskas, S. Juodkazis, M. Gu, and J. K.W. Yang	2023	Two-photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications	Adv. Func. Mater. 33 (39), 2214211	https://doi.org/10.1002/adf m.202214211
A. Camposeo, L. Persano, M. Farsari, D. Pisignano	2018	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics	Advanced Optical Materials 2019, 7, 1800419	https://doi.org/10.1002/ado m.201800419
J. Huang, Q. Qin, J. Wang		A Review of Stereolithography: Processes and Systems	Processes, 2020, 8, 1138	https://www.mdpi.com/222 7-9717/8/9/1138
H. Klauk	2012	Organic Electronics II: More Materials and Applications	1st edition	Wiley-VCH Verlag GmbH & Co. 420 p. (ISBN: 978- 3527326471)