

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code	
Digital signal processing and simulation		
Lecturer(s)	Department(s) where the cours	se unit (module) is delivered
Coordinator: dr. Sandra Pralgauskaitė	Institute of applied electrodyna Physics Faculty	mics and telecommunication,

Other(s):

Study cycle	Type of the course unit (module)
The second	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction	
Face-to-face	The first (Autumn) semester	Lithuanian	

Requirements for students						
Prerequisites: Mathematics from the first cycle of the	Additional requirements (if any):					
studies, basics of the digital signal processing or similar.						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	64	76

Purpose of the course unit (module): programme competences to be developed							
The aim of the course is to acquire knowledge about digital signal analysis algorithms and tools for digital signal							
processing, to develop a competence to perform digital signal processing and analysis.							
Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods					
	methods						
Knowledge and ability to apply various digital	Problem-based learning,	Test, participation in laboratory					
signal analysis algorithms and tools for digital	laboratory works, task analysis	work, preparation and					
signal processing.	and information search	presentation of a report					
Ability to perform digital signal analysis.	Laboratory works, task analysis	Participation in laboratory work,					
	and information search	presentation, analysis and					
		synthesis of results					
Learn the principles of digital filters and their	Problem-based learning,	Test, participation in laboratory					
applications for signals detecting and extracting	laboratory works, task analysis	work, preparation and					
from noise.	and information search	presentation of a report					
Competence to assess the productivity of the digital	Problem-based learning,	Test, participation in laboratory					
system by computer simulation.	laboratory works, task analysis	work, preparation and					
	and information search	presentation of a report					

		Contact hours					Sel	Self-study work: time and assignments	
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Introduction. Signals	2				4		6	6	Read the literature on
2. Signal processing operations	2				4		6	10	the topic, prepare for
3. Discrete-time signals and systems	4				8		12	14	the tests, prepare for
4. z-transform	6				8		14	14	laboratory works,
5. The discrete-time transforms	4				4		8	10	prepare laboratory work
7. Finite-duration sequences	6				4		10	10	description, describe and analyse the obtained results, prepare the report and its presentation.
8. Theorems of the discrete Fourier transform	2				0		2	2	Read the literature on
9.Digital filters	6				0		6	10	the topic, prepare for the tests, prepare the report and its presentation.
Total	32				32		64	76	

Assessment strategy	Weigh	Deadline	Assessment criteria	
Test No. 1	10	During the semester	T1 : Test of 10 open questions. Assessment: 1 point is awarded for every full and correct answer.	
Test No. 2	10	During the semester	T2: Test of 10 open questions. Assessment: 1 point is awarded f every full and correct answer.	
Test No. 3	10	During the semester	T3: Test of 10 open questions. Assessment: 1 point is awarded for every full and correct answer.	
Laboratory work	30	During the semester	L: Assessed, when attendance of laboratory works is at least 75 %. A description of the laboratory works (including the individual task selected from the list) is provided for the assessment. Assessment: L1: student's activity during the laboratory works (up to 1 point); L2: quality of the laboratory works' description (informativeness of the presentation of obtained results) (up to 1 point); L3: analysis and synthesis of the obtained results (up to 1 point). L=L1+L2+L3. In the case of the attendance is less than 75%, the student is offered to do one of the laboratory works by oneself (without using any of the auxiliary materials); assessment: laboratory work performed, analysis and synthesis of the obtained results.	
Report and its presentation	40	By the end of the exam session	R : The report on the selected (from the list) topic: written description, presentation of the report. Assessment: R1: analysis and implementation of the task (up to 1 point); R2: analysis and synthesis of the obtained results (up to 1	

			point); R3: quality of the description (informativeness of the presentation of obtained results, fulfilment of the VU Physics Faculty requirements for the written works) (up to 1 point); R4: the quality of presentation: fluent and focused speech, informative visual means, focusing on the audience (up to 1 point). R=R1+R2+R3+R4.
Exam (instead of tests)	30	During the exam session	 E: 5 open questions. Assessment: 5 points – excellent knowledge, ability to analyse and summarize the knowledge gained during the course; 4 points – good knowledge, course material is mastered, minor mistakes can be present; 3 points – average knowledge, mistakes are present, not able to analyse and summarize the knowledge gained during the course; 2 points – knowledge and skills are below average, a fundamental errors are made; 1 point – knowledge and skills meet the minimum requirements, mastering only part of the course material; 0 points – knowledge and skills do not meet the minimum requirements.
Final (cumulative) score			=T1:10+T2:10+T3:10+L+R (in the case the tests were written) or = $E \cdot 3:5+L+R$ (in the case the exam was taken).

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading	•		, .	
V. Kalesinskas	2012	Skaitmeninių sistemų analizė ir modeliavimas (paskaitų konspektas)		Vilnius
V. K. Ingle, J. G. Proakis	1997	Digital Signal Processing Using MATLAB V. 4		PWS Publishing Company
Optional reading	•	•	•	•
L. Tan, J. Jiang	2014	Digital Signal Processing: Fundamentals and Applications		Elsevier https://www.sciencedirect.com /science/article/pii/B97801241 58931010015
F. C. Tenoudji	2016	Analog and Digital Signal Analysis: From Basics to Applications		Springer International Publishing Switzerla
M. S. Kumar	2006	Digital signal processing: a computer based approach		McGraw-Hill Higher Education
P. S. R. Diniz, E. A. B. da Silva, S. L. Netto	2002	Digital Signal Processing: System Analysis and Design		Cambridge Univ. Press.
P. S.R. Diniz	2008	Adaptive Filtering, Algorithms and Practical Implementation		Springer
J. G. Proakis, D. G. Manolakis	2007	Digital Signal Processing: Principles, Algorithms, Applications		Prentice Hall
C. Chi-Tsong	2001	Digital signal processing: spectral computation and filter design		New York, Oxford: Oxford University Press
G. Blanchet, M. Charbit	2014	Digital Signal and Image		John Wiley & Sons,

Processing Using MATLAB,	Incorporated	
Volume 1 : Fundamentals	https://ebookcer	tral.proquest.c
	om/lib/viluniv-	1 1
	ebooks/detail.ac	tion?docID=1
	752711	