Course unit title	Course unit code
DATA STRUCTURES AND ALGORITHM ANALYSIS	

Lecturer (s)	Department where course unit is delivered
	Vilnius University Kaunas Faculty
Part. Prof. Dr Darius Dilijonas	Address: Muitinės street. 8,
	LT-44280 Kaunas, Lithuania

Cycle	Level of course unit	Type of the course unit		
Primary	1/1	Mandatory or Individual Studies		

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Class work, lectures	Spring Semester	English

Prerequisites and corequisites					
Prerequisites: Understanding principles of programing and math	Corequisites:				
chaerstanding principles of programming and main					

Number of ECTS credits allocated	Student's workload	Contact work hours	Individual work hours
5	130	52	78

Purpose of the course unit: programme competences to be developed

This course provides an introduction to the design and analysis of fundamental data structures and algorithms. Basic data structures to be covered including arrays, lists, stacks, queues, trees, heaps, priority queues, hash tables, and graphs. Algorithms include searching, sorting, tree and graph traversal using the above data structures. Algorithm analysis techniques will be emphasized when using the data structures for designing efficient algorithms.

In this course, we will explore several fundamental algorithms and data structures in computer science. You will implement some algorithms in C++. Some of the data structures we will encounter include linked lists, stacks, queues, trees, heaps, hash tables, and graphs. We will study and analyze algorithms for searching, traversing trees, hashing, manipulating priority queues, sorting, finding shortest paths in graphs, and much more.

The basic idea of this course is to help you understand many of the fundamental data structures of computer science. With an appreciation for data structures and algorithms and practical experience in implementing them you can be a much more effective designer, developer, or customer for new applications. Elegant algorithms are also a nice counterpoint to the crafty code and weird features we encounter in daily work.

Learning outcomes of course unit	Teaching and learning methods	Assessment methods
Understand dictionary/search data structures (lists, trees, hash tables).		Exam (to solve problems using analytical methods
Understand graph representations and algorithms.	Lectures, analysis and reading of	and programming skills
Understand time and space analysis for both iterative and recursive algorithms and be able to prove the correctness a non-trivial algorithm.	assigned literature	acquired from lectures and assignments to demonstrate knowledge and

		comprehension of course material.), open questions 3-4, practical cases to solve
Be able to translate high-level, abstract data		
structure descriptions into concrete code.	LAB/Practical	Practical assignments to
Understand how real-world problems map to	Work; individual	implement data structures
abstract graph problems.	work on assigned	and algorithms using a
Be able to communicate clearly and precisely about	tasks; practical	high-level programming
the correctness and analysis of basic algorithms	exercises	language
(both oral and written communication).		

Course content: breakdown of the topics		Contact work hours					Individual work hours and tasks		
		Consultations	Seminars	Practice classes	Laboratory	Practice	All contact work	Individual work	Tasks
Introduction and Short Overview of C++	2				4		6	8	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Algorithm Analysis	2				4		6	8	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Arrays, Lists, Stacks and Queues	2				4		6	8	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Trees and Binary Search Trees	2				4		6	9	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Search Trees and Multiway- Search Trees	2				4		6	9	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Hashing and Priority Queues (Heaps)	2				4		6	9	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Sorting	2				4		6	9	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Graphs and Advanced Data Structures and Implementation	2				4		6	9	Literature analysis; LAB/practical work; individual work on assigned tasks; practical exercises
Assignments, midterm exams and final exam		4					4	9	Literature analysis, preparation for assignments and exam
Total	16	4	0	0	32	0	52	78	

Assessment strategy	Comparati ve weight percentage	Date of examinati on	Assessment criteria	
Assignment 1	20%	Week 9	Each assignment may have a mixture of written and programming	
Assignment 1	20%	Week 16	components. Each assignment will specify the material to be turned in. All programming will be in C/C++.	
			Grading scale (based on 10 points) 10 /A (excellent) Excellent, exceptional knowledge and abilities 9 /A (very good) Strong, good knowledge and skills 8 /B (well) Better than average knowledge and skills 7 /C (moderate) Average knowledge and abilities, there are minor errors 6 /D (satisfactory) Knowledge and skills (skills) are lower than average, there are errors 5 /D (weak) Knowledge and skills (skills) meet the minimum requirements 4, 3, 2, 1 /F (unsatisfactory) Minimum requirements are not met	
M. I. E. 1	100/	XX 1.7	Individual work. On exams, students are asked to solve problems using analytical	
Midterm Exam 1 Midterm Exam 2	10%	Week 7 Week 13	methods and programming skills acquired from lectures and assignments to demonstrate knowledge and comprehension of course material	
			Grading scale (based on 10 points) 10 /A (excellent) Excellent, exceptional knowledge and abilities 9 /A (very good) Strong, good knowledge and skills 8 /B (well) Better than average knowledge and skills 7 /C (moderate) Average knowledge and abilities, there are minor errors 6 /D (satisfactory) Knowledge and skills (skills) are lower than average, there are errors 5 /D (weak) Knowledge and skills (skills) meet the minimum requirements 4, 3, 2, 1 /F (unsatisfactory) Minimum requirements are not met Will be in regular classroom.	
Final exam	40%	January	On exams, students are asked to solve problems using analytical methods and programming skills acquired from lectures and assignments to demonstrate knowledge and comprehension of course material	
			Grading scale (based on 10 points) 10 /A (excellent) Excellent, exceptional knowledge and abilities 9 /A (very good) Strong, good knowledge and skills 8 /B (well) Better than average knowledge and skills 7 /C (moderate) Average knowledge and abilities, there are minor errors 6 /D (satisfactory) Knowledge and skills (skills) are lower than average, there are errors 5 /D (weak) Knowledge and skills (skills) meet the minimum requirements 4, 3, 2, 1 /F (unsatisfactory) Minimum requirements are not met	
			Exam, open questions 3-4 (70% of exam grade), solution of data structure and algorithm 1-2 (30% of exam grade)	

Author	Year	Title	Number of periodical publication or publication Volume	The place of publication and publisher or online link
Required readin	g			
Weiss, Mark Allen	2014	Data structures and algorithm analysis in C++	Fourth edition; <i>ISBN-13: 978-0-13-284737-7</i>	Pearson Education, Inc.
Robert Lafore, Sams	1999	Teach Yourself Data Structures and Algorithms in 24 Hours Paperback	ISBN-10: 0672316331;	Sams
Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran	1998	Computer Algorithms;	ISBN 0-7167- 8316-9;	W. H. Freeman,
Thomas H. Cormen [et al.].	2009	Introduction to algorithms	ISBN 978-0-262- 03384-8	Massachusetts Institute of Technology
Recommended r	eading			
Michael T. Goodrich, Roberto Tamassia, David M. Mount	2011	Data Structures and Algorithms in C++	Second Edition; ISBN-13 978-0- 470-38327-8	John Wiley & Sons, Inc.
KRUSE, ROBERT L.	2000	Data structures and program design in C++	ISBN 0-13- 087697-6	Prentice-Hall, Inc.