

COURSE UNIT DESCRIPTION

Course unit title		Course unit code
Parallel and Distributed Computing		PMLS7124
Lecturer(s)	Departme	nt where the course unit is delivered
Coordinator: Prof. Rimantas Vaicekauskas	mputer Science	
	Faculty of Mat	hematics and Informatics
Other lecturers: -	Vilnius Univer	sity

Cycle	Level of course unit	Type of the course unit
2^{nd} (MA)	-	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	1 st semester (5 th semester part-time)	Lithuanian, English

Prerequisites and corequisites						
Prerequisites: Corequisites (if any):						

Number of credits allocated	Student's workload	Contact hours	Individual work
5	130	48	82

Purpose of the course unit: programme competences to be developed

Purpose of the course unit: to develop an understanding of the principles and paradigms of designing, analyzing, implementing and using of parallel high-performance software and hardware systems, algorithms and applications

Generic competences:

• Planning and organization (*GK2*).

Specific competences:

- Software requirements and design (SK4).
- Software construction (SK5).

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
 evaluate parallel computation methods and tools and choose the right system for developing a specific application. formalize a subject area, to formally define the specific requirements and use them in the parallel 	Lectures, problem-oriented teaching, case studies, information retrieval, literary reading, individual work,	Individual laboratory works and results presentation, written exam (open, semi-open and close-ended questions and tasks)
computation	laboratory work	questions and tasks).
- clearly present the chosen topic, summarize it, argue and defend his/her own opinion.	Information retrieval, literary readings, report preparation and presentation at the seminar, group discussion, demonstration	Presentation material, the oral presentation, answers to oral questions

	Contact hours							Individual work: time and assignments			
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work	Practice	Contact hours	Individual work	Assignments		
1. The fundamentals of parallel computations. Concurrency and synchronization, using shared memory variables and semaphores.	2						2	4	Self-study of literature.		
2. Language level synchronization. Monitors. Java programming language.	2				2		4	4	Self-study of literature. Preparation for the 1 st laboratory work.		
3. Deadlock: detection, avoidance, prevention and recovery. Banker's algorithm. Mathematical modeling of deadlock using Petri nets.	2				2		4	8	Self-study of literature.		
4. Threads implementation: POSIX, OpenMP. Paradigms of shared memory computations: master-slave, work pool, pipelined computation.	2				2		4	8	Preparation for the delivery of 1 st laboratory work.		
5. Parallel architectures, MIMD and SIMD classifications, network topologies, Amdahl's law, speed up and scalability. Performance analysis.	2				2		4	8			
6. Parallel programming using message passing tool MPI. Parallel Monte Carlo methods, Mandelbrot set computations.	2		2		2		6	8			
7. Partitioning and divide-and- conquer strategies. Gravitational N-Body problem. Barnes-Hut algorithm.	2		2		2		6	8	Preparation for the 2 nd laboratory work. Prepare presentation.		
8. Pipelined computations. Parallel sieve of Eratosthenes, solving system of linear equations.	2		2		2		6	8			
9. Synchronous computations. Jacobi iteration. Parallel algorithm for solving heat distribution problem.	2		2		2		6	6			
10. Load balancing and termination detection. Shortest path problem.	1		2				3	6	Prepare and deliver a presentation on a solving given (scientific) problem using		
11. Parallel algorithms and applications: sorting, numerical algorithms, image processing.	1		2				3	6	parallel computations, which is not discussed in the study program. Self-study of literature.		
12. Preparing for the exam and taking the final exam (written)								8	Self-study of literature, self-control tasks		
Total	20		12		16		48	82			

Assessment strategy	Weight,	Deadline	Assessment criteria
Oral presentation	30	During the semester	 The following aspects of the presentation are assessed: The presentation structure, size and style: the structure is clear and logical, contains all necessary components (introduction, explanation, conclusions), the presentation is of a reasonable duration; the material was delivered for a preview. Completeness, recommendations and conclusions: The material presented in detail and in comparison to others methods/tools, recommendations and conclusions are grounded - 2 points; if the material is incomplete or the given conclusions are unreasonable - 1 point.
1 st laboratory work		8 th week of the semester	 1st laboratory work: to create computer program that implements synchronization object to solve given coordination problem among threads, using <i>synchronized</i> statement (part A) and events (part B). The assessment of the laboratory work: A synchronization object is working correctly as described. The work is completed and defended on time (within 8 weeks) - 1 point. Lateness no more than 2 weeks leads to reducing the assessment in 25%, lateness no more than 4 weeks – 50%, later – 75%.
2 nd laboratory work	20	16 th week of the semester	2 nd laboratory work: apply parallel programming tool (part A – OpenMP / POSIX threads, part B –MPI) to effectively solve specified computation problem. To evaluate mathematically and test practically the performance of the parallel solution. The assessment of the laboratory work: The parallel solution is working; it solves given problem and outputs the correct result. The presented performance analysis agrees with testing results. The results show increasing of the speed up with increasing number of processors used in the computation. The solution is completed and defended – 1 point.
Exam (written)	50	Exam session	 The exam consists of 10-20 open, semi-open and close-ended questions and tasks each of them is assessed between 0.1 and 0.5 points. The exam is allowed only after presenting the report of the seminar and the collection of at least 2 points before the exam. The assessment of the exam: 5 points: excellent knowledge and skills, the assessment level, collected at least 4.5 points; 4 points: good knowledge and skills, the synthesis level, collected at least 3.5 points; 3 points: average knowledge and skills, the analysis level, collected at least 2.5 points; 2 points: knowledge and skills are less than average, the application level, collected at least 1.5 points. 1 point: knowledge and skills are too low, collected less than 1.5 points.

Author	Year	Title	Number or	Publisher or URL
			volume	
Required reading				
B. Wilkinson, M. Allen	2004	Parallel programming:	2nd ed.	Pearson
		techniques and applications		
		using networked workstations		
		and parallel computers		
	1995	Designing and Building	V1.3	http://www.mcs.anl.gov/~itf/db
Ian Foster		Parallel Programs		pp/
Recommended reading				
Gregory R. Andrews	1999	Foundations of Multithreaded,	1st ed.	Addison - Wesley

		Parallel, and Distributed Programming		
By Raimondas Ciegis, David Henty, Bo Kagstrom and Julius Zilinskas	2008	Parallel Scientific Computing and Optimization: Advances and Applications (Springer Optimization and Its Applications)	1st. ed.	Springer