

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title Code Applied petrology

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinators: assoc.prof. Gražina Skridlaitė	Department of Geology and Mineralogy, Institute of
Other(s): assoc.prof. Donatas Kaminskas	Geosciences, Faculty of Chemistry and Geosciences, Vilnius University, M.K. Čiurlionio str. 21/27, LT-03101 Vilnius.

Study cycle	Type of the course unit (module)
Full-time studies (2 nd stage, master)	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	Autum semester (1 st semester).	Lithuanian (English)

Requirements for students								
Prerequisites: secondary school basic knowledge on	Additional requirements (if any):							
physics, chemistry and mathematics. Knowledge of	no							
introduction to mineralogy, petrology and geochemistry is								
recommended.								

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5		64 (48 – lectures; 12 – exercises; 4 - seminars)	69

Purpose of the course unit (module): programme competences to be developed

Main purpose is to enable the student to analyze complex evolution of the Earth crust during geological time using up-todate investigation tools: to improve and deepen knowledge on the evolution of magmatic, metamorphic and sedimentary rocks leading to the formation of Earth's Crust and surface; to acquire skills of modern microscopic and geochemical and isotopic methods of investigation for different rocks, and their practical application.

- Development of subject competences: enhanced knowledge on identification of rock varieties; understanding of principles of chemical and physical rock-forming processes; understanding of principles of geochemistry and geochronology as applied to the rock evolution; ability to explain and compare the obtained results in terms of rock evolutionary histories; ability to evaluate different investigation tools and to chose the most appropriate set for the solution of a particular scientific problem in the interest field; formation of skills for the identification of major rock types under microscope or according their chemical and isotopic composition.

- Development of general competences: capability of self-study and improvement; ability to convey knowledge in oral and written forms; competence in analysis; competence in decision making; ability for scientific research

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
	Lectures, problem based	Intermediate assessments (one
- understand and explain major rock forming	learning; essay writing; seminar,	written colloquium); defense of
processes through Earth's history implied from their	exercises; self-study	the essay theses; recognition of
compositional features; understand how rock		major rock types under
composition and properties depend on their origin		microscope (optical or SEM);
and tectonic setting;		final written examination;
-		formative assessment plus

	summative assessment;
- understand how isotopic systems evolved through the geological time; relate isotopic abundances and ratios to certain Earth's crust forming processes;	
- choose the most comprehensive and appropriate set of analytical methods in order to identify a rock or imply its evolution; to interpret properly the results of the microscopic and isotopic investigations;	
- be able to apply practically some of the methods for a particular scientific problem of rock-forming processes;	
-be able to recognize most common types of rocks under polarizing and scanning electron microscope or according their chemical and isotopic composition	

	Contact hours						Self-study work: time and assignments		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work Macement	Contact hours	Self-study hours	Assignments
1. Introduction to major rock types and rock-forming processes: review of rock types and their origin, optical and chemical and isotopic properties and their tectonic settings.	4	-					4	8	Self-study of reference material.
2. Rock chemistry and its application for igneous and metamorphic rock classification and discrimination. Major discrimination diagrams for different rock types. Recalculations of chemical analyses and construction of classification and discrimination diagrams, their interpretation.	4			2			6	4	Self-study of reference material
3. P-T (pressure-temperature) calculations for the evaluation of rock-forming conditions: mineral associations suitable for P-T calculations, calculation programmes, errors, interpretation of the results.	4			2			6	4	Self-study of reference material
4. Nucleosynthesis, radioactive decay and mass spectrometry: introduction, laws, chemical separation, ion sources, application of MS-ICP-MS and other methods to radiogenic isotopes	4						4	4	Self-study of reference material
5. The Rb-Sr method: dating igneous and metamorphic rocks; the Sm-Nd method: Sm-Nd isochrons, Nd isotope evolution and model ages, the crustal growth problem; Lead isotopes: U-Pb isochrons, U-Pb (zircon) and U-Pb-Th (monazite) datings; Osmium isotopes: Os analysis, Re-Os decay schemes, petrogenesis and ore genesis. Recalculations of the obtained results and their interpretation	6			2			8	8	Self-study of reference material

		I I			-		-	
6. Major and trace elements in sedimentary rocks.	4					4	3	
7. Rare Earth Elements (REE), Chondrite	4			2		6	4	
normalization, REE NASC normalization for								
sediments. Interpretating REE patterns in								
sedimentary rocks.								
8. Variation of d ¹⁸ O in nature. Oxygen isotope	4			2		6	4	
thermometry. Fluid temperature calculations for								
calcite and dolomite from oxygen isotope data.								
9. Using carbon isotopes. Their distribution in nature.	4			2		6	4	
Applications. Carbon stable isotopes excursions.								
10. Main components of sedimentary rocks.	4					4	4	
Principles of thin section description of sedimentary								
rocks under a polarized light microscope								
11. Clay minerals. Classification and chemical	4					4	2	
composition. Dating of clay minerals								
9. Student presentations	2		2			4	10	Self-study of reference
1								material
10. Student presentations (continued). Repetition.			2			2	10	Self-study of reference
			-				-0	material
Total	48		4	12		64	69	materia
Total	.0		•			51		

Assessment strategy	Weigh	Deadline		Assessment criteria
	t,%			
Written colloquium	20	During	the	Knowledge and understanding of terminology and concepts,
		term		reasoning abilities, ability to synthesize different kinds of given
				information, analytical skills.
	10	During	the	To write and defend essay before the final examination Essays
Essay and presentations		term		assessment is based on comprehensiveness and brevity,
				clearness of writing style, degree of understanding of the
				chosen subject.
Recognition of major rock	10	During	the	It is obligatory to recognize some major rock types under
types under microscope and		term		microscope
geochemical as well as				
isotopic calculations in order				
to imply rock origin				
Final written examination	60	End of	the	Formative and summative essays evaluation and accumulative
		term		final score, 10-point system.

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Gautam, Sen	2014	Petrology: Principles and Practice		Springer-Verlag Berlin
Reed, S .J. B.	2005	Electron Microprobe Analysis and Scanning Electron Microscopy in Geology		Cambridge University Press
Faure, G. and Mensing T.M.	2005	Isotopes: principles and applications (Third Edition)		John Willey & Sons, Inc., Hoboken, New Jersey
Dickin, A. P.,	2005	Radiogenic Isotope Geology (Second Edition)		Cambridge University Press
Rollinson, H.	1993	Using geochemical data: evaluation, presentation, interpretation		Longman Group UK Limited
Faure, G.	1991	Principles and applications of geochemistry: a comprehensive textbook for geology students		Prentice-Hall, Inc.

Optional reading				
Winter, John. D.	2014	Principles of Igneous and Metamorphic Petrology (second edition)		PEARSON
Faure, G.	2001	Origin of Igneous Rocks: the Isotopic Evidence		Springer-Verlag
Spear, F.S.	1993	Metamorphic Phase Equilibria and Pressure-Temperature- Time Paths		Mineralogical Society of America
Motuza. G.	2006	Magminių ir metamorfinių uolienų petrologija		Vilnius, Vilniaus universiteto leidykla
Tucker M. (ed.)	1998	Techniques in sedimentology		Blackwell Science Ltd
Skridlaite, G, Whitehouse, M., Rimša, A.,	2007	Evidence for a pulse of 1.45 Ga anorthosite-mangerite- charnockite-granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton	<i>Terra Nova</i> , Vol. 19, issue 4, 294-301	Blackwell publicat
Skridlaite, G., Willingshofer, E., and Stephenson, R.	2003	P-T-t modelling of Proterozoic terranes in Lithuania: geodynamic implications for accretion of southwestern Fennoscandia	<i>GFF</i> , Vol. 125, 201- 211	Taylor & Francis , Journal of the Geological Society of Sweden
Skridlaite, G., Bogdanova S., Page L	2	Mesoproterozoic events in Eastern and Central Lithuania as recorded by 40Ar/39Ar ages	<i>Baltica</i> , Vol. 19 (2), 91-98	Vilnius