

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Basic Principles of Synthesis of Nanoparticles	

Lecturer(s)	Department (s) where the course unit (module) is delivered
Coordinator: Asst. prof. dr. Jurgis Pilipavičius	Faculty of Chemistry and Geosciences, Institute of Chemistry
Other(s):	Naugardukas str. 24, LT-03225 Vilnius

Study cycle	Type of the course unit (module)		
First Cycle	Optional		

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face to face	7 th semester	English and Lithuanian

Requirements for students						
Prerequisites: General Chemistry, Qua Chemistry, Inorganic Chemistry, Organic Chem Colloidal Chemistry	Additional requirements (if any):					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	135	48	87

	Purpose of the course unit (module): programme competences to be developed								
	After completion of the course, students will be acquainted with essential types of nanostructures, their properties, synthesis								
methods	methods and principles, and applications.								
Le	arning outcomes of the course unit (module)	Teaching and learning	Assessment methods						
		methods							
1.	Students are able to apply appropriate terminology	Lectures, literature	Exam (written)						
	regarding nanostructures and classify them.	individual study							
2.	Students are able to describe chemical composition,	Lectures, literature	Exam (written)						
	physical and chemical properties of main	individual study							
	nanostructures.								
3.	Students know basic synthesis, functionalization	Lectures, literature	Exam (written)						
	and stabilization methods and principles of	individual study							
	nanostructures.								
4.	Students are able to analyze most recent scientific	Study of selected scientific	Presentation (oral)						
	literature regarding application of nanostructures in	review articles							
	English.								
5.	Students are able to present analyzed scientific	Preparation of presentation	Presentation (oral)						
	information in public.	of scientific review article.							

		Con	tact h	ours				Self-study work: time and assignments
Content: breakdown of the topics	Lectures	Seminars	Exercises	Laboratory work	Internship/work placement	Total contact hours	Self-study hours	Assignments
Introduction to the chemistry of nanostructures	3					3		
Characterization methods of nanostructures	3					3		
Intermolecular interactions and nanoparticle stability in solution	4					5	8	Reading of course material and literature
Energy carriers and size effects in nanostructures	3					4	8	Reading of course material and literature
Synthesis, properties and functionalization of carbon nanotubes	3	1				4	8	Reading of course material and literature
Synthesis, properties and functionalization of graphene	3	1				4	8	Reading of course material and literature
Synthesis, properties and application of metal nanostructures	3	1				4	8	Reading of course material and literature
Synthesis, properties and application of semiconducting nanoparticles	3	1				4	8	Reading of course material and literature
Synthesis, properties and application of Up-conversion nanoparticles	3	1				4	8	Reading of course material and literature
Synthesis, properties and application of metal oxide nanostructures	3	1				4	8	Reading of course material and literature
Oral presentation of selected review articles	1	10				9	23	Study and presentation of scientific review article
Total:	32	16				48	87	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Presentation (oral)	40%	During semester	Deepening on the presented topic, presentation comprehensiveness, use of proper terminology during presentation, and fluency of presentation. The presentation must receive a positive evaluation.
Exam (written)	60%	During session	Ability to answer clearly and precisely the questions asked (in writing). Ability to properly use terminology. The level of knowledge of the essential ways of obtaining nanostructures. The exam must be passed (the student must be evaluated positively)

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
C. N. R. Rao, A.	2004	The Chemistry of	I ir II volumes	Vilnius University library,
Muller, A. K.		Nanomaterials: Synthesis,		Chemistry reading room
Cheetham		Properties and Applications		
Optional reading				
Robert Vajtai	2013	Springer Handbook of	1 ledimas	https://www.springer.com/
		Nanomaterials		us/book/9783642205941

Andrew M. Collins	2012	Nanotechnology Cookbook	1 leidimas	https://www.elsevier.com/
				books/nanotechnology-
				cookbook/collins/978-0-
				08-097172-8