

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Artificial Intelligence: Classical Principles	

 Summary

 This course comprises only elements of artificial intelligence (AI) and not the whole variety of AI techniques. Emphasis is on the classical AI, a.k.a. Good Old-Fashioned Artificial Intelligence, GOFAI, https://en.wikipedia.org/wiki/GOFAI. Hence, the course comprises the principles of AI, search methods, and logic-based representations. Machine learning and artificial neural networks are out of scope of this one-semester course.

Lecturer(s)	Department
Coordinator: assoc. prof. Vytautas ČYRAS	Department of Software Engineering
	Institute of Computer Science
Other lecturers: -	Faculty of Mathematics and Informatics
	Vilnius University

Cycle	Type of the course unit
1 st (BA)	Non-compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	5, 6, 7 semester	English

Prerequisites

Programming skills in a programming language, for example, C, C#, Java, Pascal, Perl, Python, etc.

Number of credits allocated	Student's workload	Contact hours	Individual work
5	130	64	66

Purpose of the course unit: programme competences to be developed							
To develop competencies and skills in artificial inte	elligence: to understand the philos	ophy of AI and the question "Can					
machines think?". To gain programming skills at cre	eating future intelligent systems, w	which extend the limits of machine					
intelligence of the past and use the elements of hun	nan intelligence in problem solvin	lg.					
Generic competences: communication and collabo	pration, life-long learning, and soc	ial responsibility.					
Specific competences: knowledge and skills of und	lerlying conceptual basis, softwar	e development knowledge and					
skills, technological and methodological knowledg	e and skills, and professional com	petence.					
Learning outcomes of the course unit:	Teaching and learning	Assessment methods					
students will be able	methods						
To understand the fundamental concepts of AI:	Problem-based teaching, indi-	Written examination, assign-					
problem solving by search, backtracking, solver,	vidual reading, writing prog-	ments.					
planner, software agent, the Turing test, etc.	rams.	Criteria: the quality of					
To program basic techniques of inference:		programming; accomplishing					
backtrack (depth-first), breadth-first search,		the assignments in due time –					
forward chaining and backward chaining.		no delay; understanding the					
To understand the essence of AI: differentiating		subject matter of AI.					
between human intelligence and machine							
intelligence, extra-logical choice in decision							
making, e.g., in legal reasoning.							

	Contact hours							Individual work: time and assignments	
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work (LW)	Praktika	Contact hours	Individual work	Assignments
1. Artificial intelligence (AI): a history, a philosophy, and the hype. Examples of intelligent tasks. AI as a discipline within a classification of computing. The Turing test and interpreting the question "Can machines think?"	2			2			4	4	The Tower of Hanoi puzzle. <i>Literature</i> : the course-book (text- book) (Čyras 2021), (Nilsson 2010), (Luger 2009), <u>https://en.wikipedia.or</u> g/wiki/Turing_test
2. A system of artificial intelligence: 1) a global data base, 2) a set of production rules, and 3) a control system. Procedure PRODUCTION. Examples: the Tower of Hanoi problem, etc.	2			2			4	4	The Knight's tour program. <i>Literature</i> : textbook, (Nilsson 1982; 1998)
3. Procedure BACKTRACK. A problem solving example: the Knight's tour problem.	2			2			4	4	<i>Literature</i> : textbook, (Nilsson 1982; 1998)
4. Avoiding loops in labyrinth depth-first search (DFS) with BACKTRACK1, a modified procedure.	2			2			4	4	Programming DFS in a labyrinth. <i>Literature</i> : textbook, (Nilsson 1982)
5. The concept of heuristic. Examples in the N- queens problem.	2			2			4	4	<i>Literature</i> : textbook, (Nilsson 1982; 1989)
6. Breadth-first search (BFS). The lists OPEN and CLOSED and the shortest path. The types of intelligent agents: reflexive and rational agents.	2			2			4	4	Programming BFS in a labyrinth. <i>Literature</i> : textbook, (Russell & Norvig 2020), (Nilsson 1998)
7. Procedure GRAPHSEARCH. The solver and the planner. A* search algorithm.	2			2			4	4	<i>Literature</i> : textbook, (Nilsson 1982; 1998)
8. Forward chaining (FC): from the facts to the goal, non-recursive. Backward chaining (BC): from the goal to the facts, recursive. Rule format: A1,, An \rightarrow B.	2			4			6	4	Programming FC. <i>Literature</i> : textbook, (Negnevitsky 2011)
9. Hill climbing strategy.	2			0			2	4	<i>Literature</i> : textbook, (Nilsson 1982; 1998)
10. Knowledge-based reasoning, the resolution rule, deduction. Inference forwards and backwards. Logic-based knowledge representation.	2			2			4	6	Programming BC. Literature: textbook, (Nilsson 1998), (Russell & Norvig 2020)
11. Elements of expert systems architecture: a knowledge base (facts and rules), an inference engine and user interface.	2			2			4	4	<i>Literature</i> : textbook, (Nilsson 1998)
12. Extra-logical choice in decision making, e.g., "low-quality but cheap" versus "good-quality but expensive". Transforming the problem of impossibility of achieving several goals into a weighing problem. Deduction and abduction rules. Defeating argumentation trees.	2			2			4	4	<i>Literature</i> : textbook, (Bench-Capon & Prakken 2006)
13. The Internet shopping world (see Russell & Norvig 2003, p. 344–348): specifying a search engine. A category tree as an ontology.	2			2			4	4	<i>Literature</i> : textbook, (Russell & Norvig 2003; 2020)
14. Knowledge representation methods: structural representation, frames, semantic networks.	2			2			4	4	<i>Literature</i> : textbook, (Nilsson 1998)

15. Extensional relational structure, intensional relational structure (conceptualization), intended models, and ontology.	2		2		4	4	Literature: https://www.researchg ate.net/publication/22 6279556 What Is an Ontology
16. Summing up the principles of artificial intelligence. Discussing the examination.	2		2		4	4	Preparing to the exam
Total	32		32		64	66	

Assessment strategy	Weight	Deadline	Assessment criteria
1. Simple programs. For	0%	Week 6	Each assignment shall be finished in due time, no delay.
instance, the Tower of			Forward chaining and backward chaining programs shall
Hanoi puzzle, the Knight's			be finished in four weeks. Week 1: your program reads
tour, labyrinth path search			initial data and prints it. Week 2: simple tests. Week 3:
(DFS, BFS), A*.			complex testing. Week 4: – acceptance.
2. Forward and backward	30%	Week 11 FC,	Assignments' assessment criteria: the quality of
chaining programs (FC and		Week 15 BC	programming, testing and documenting. The output of a
BC).			test comprises 1) input data from a file, 2) execution trace
			(log), and 3) the results. The code shall contain comments,
			step numbering, and explanations of data structures.
			A review instead of FC/BC. An option (e.g., for
			students who are less-skilled in programming) is
			(1) investigating a chosen problem, article or book, (2)
			writing a review, and (3) making a presentation. Font 12 pt,
			spacing 1, ~ 20 pages with references. Evidence of
			understanding the problem.
			For examination it is obligatory to pass all
			assignments. Assignments rate 30% of the exam's score.
			It is strongly recommended to attend \geq 75% of lectures
			and practice.
3. Examination.	70%	Examination	The examination comprises a theory question and an
		date	exercise. The exercise: for a given graph, draw search trees
			from a node <i>s</i> to <i>t</i> according to procedures BACKTRACK1
			and GRAPHSEARCH "depth-first"; indicate distinctions.
			The assignments score counts if each question is
			answered in the affirmative. In other words, the exam grade
			is placed positive only if each exam question is answered
			in the affirmative (\geq 5 out of 10).

Author	Publi- shing	Title	Number or volume	Publisher or URL						
Required reading										
1. Vytautas ČYRAS	2022	Artificial Intelligence (a textbook)		https://klevas.mif.vu.lt/~cyras/ AI/konspektas-intelektualios-						
2. Nils NILSSON	1997	Artificial intelligence: a new synthesis		Elsevier Science & Technolo- gy. VU MIF, 004.8 Ni-133. https://ebookcentral.proquest.c om/lib/viluniv- ebooks/detail.action?docID=1 179844						
3. Stuart RUSSELL, Peter NORVIG	2020	Artificial intelligence: a modern approach (4th edition)		Prentice Hall, 1115 p. VU MIF, 2nd edn (2003), Ru122. https://aima.cs.berkeley.edu. https://ebookcentral.proquest.c om/lib/viluniv- ebooks/detail.action?docID=5 495854						
4. Michael NEGNEVITS- KY	2011	Artificial intelligence: a guide to intelligent systems (3rd edition)		Pearson Education. VU MIF, 2nd edn. (2005), 004.8/Ne-44. https://ebookcentral.proquest.c						

		Decomposed and see dim	-	om/lib/viluniv- ebooks/detail.action?docID=5 186211
		Recommended readin	g	
1. Nils NILSSON	2009	The quest for artificial		Cambridge University Press.
		intelligence: a history of		VU MIF, 004.8 Ni-133.
		ideas and achievements		https://doi.org/10.1017/CBO9
				780511819346
2. Nils NILSSON	1982	Principles of artificial		Springer-Verlag
		intelligence		1 0 0
3. George LUGER	2009	Artificial intelligence:		Addison-Wesley, 928 p.
-		structures and strategies		https://www.cs.unm.edu/~luge
		for complex problem		r/. VU MIF, 004.8/Lu-59
		solving (6th ed.)		_ ,

Updated 11 July 2023