

COURSE UNIT DESCRIPTION

Course unit title	Code
Robotic Systems Infrastructure Models	

Annotation

This module will provide students with knowledge of robotic cell structure and how robotic systems work. Knowledge of system component working principles, functions and interaction. Gain background knowledge of various types of sensors, digital electronics, industrial controlers, pneumatics and robotic manipulators.

Lecturer(s)	Department, Faculty
Coordinating: Dainius Balbonas	Siauliai Academy
Other: Edvardas Bielskis	

Study cycle	Type of the course unit		
First cycle studies	Compulsory / Individual studies		

Mode of delivery	Semester or period when it is delivered	Language of instruction
Face-to-face	3 semester	Lithuanian/English

Requisites					
Prerequisites:No	Co-requisites (if relevant):No				

Number of ECTS credits allocated	Stude	ent's workload (total)	Contact hours		rs	Individual work
5		133	56			77
Purpose	e of the co	ourse unit: prograi	nme compe	tences	to be de	veloped
To gain an understanding of	the funda	ments and structure	e of robotic ir	ndustria	l systems	5.
Learning outcomes of the	Learning outcomes of the course		arning meth	nods	Assessment methods	
unit						
Knowledge of the struct operation of a robotic system		Formal lecture, Int	ormal lecture, Interactive lectu			ation
Ability to understand the prir operation of individual con of a robotized system.		Formal lecture, I Laboratory Library / information One-to-one tutoria	cla on retrieval	asses,		ation, Individual homework, ory examination
Ability to analyze inte between components of systems	eractions robotic	Interactive Library / informatio One-to-one tutoria	information retrieval tasks,		Examina	ation, Individual homework

Course content: breakdown of the topics		Contact hours							Individual work: time and assignments	
		Tutorials	Seminars	Workshops	Laboratory work	Internship/work placement	Contact hours, total	Individual work	Assignments	
Introduction to Industrial Robotics.	2	-	-	-		-	2		Study of the presented	
Sensors are used in robotic systems.	6	-	-	-	8	-	14	17	literature,	
Digital Logic and controllers.	4	-		-	6	-	10	14	preparation for	
Pneumatic systems.	4	-	-	-	-		4	10	laboratory works.	
Robotic manipulator and its structure.	4	-	-		6	-	10	13	Searching for	
Interaction of components of a robotized system.	4	-	-	-	4	-	8	10	information in	
Safety systems	4	-	-	-	4	-	8	13	various sources	
Total	28	-	-	-	28	-	56	77		

Assessment strategy	Weight %	Deadline	Assessment criteria
Defence of the individual homework	25	Till the end of the smester	Scope and completeness of the work, as well as the quality of the written work are assessed. It is possible to score 25 points.
Defense of laboratory works	25	Time during the semester	The quality of laboratory work reports is evaluated, 10 points can be collected (max 2 point from each laboratory). Evaluated answers to the questions asked during the laboratory defense year, can be scored 15 points (max 3 point from each laboratory). Total 25 points from laboratory defense.
Exam	50	Time during the session	During the exam, the students solves a test of 25 closed type questions and completes one practical task. The value of each closed question is 1 point, the value of the practical task is 25 points (the completed task is 25 points, the incomplete task is evaluated in steps by 5 points (25, 20, 15 and so on)). The maximum grade of the exam is 50 points (25 for the first part and 25 for the second part).
			Final evaluation. The system of ten grades and gathered evaluation system are being employed. The system of ten grades and gathered evaluation system are being employed. Individual homework (25%), reporting for laboratory work (25%), exam (50%).

Author	Publishi ng year	Title	Issue of a periodical or volume of a publication; pages	Publishing house or internet site
		Required read	ing	
S. Bouchard	2017	Lean Rorobtics. A guide to making robots work in your Factory		Samuel Bouchard https://leanrobotics.org/
J. Fraden	2010	Handbook of Modern Sensors. Physics, Designs, and Applications		Springer, (electronic version)
D. Balbonas, E. Bielskis	2019	Robot Maitenance Training material		

W. Bolton	2006	medžiaga (electronic version).). Programmable logic controllers		Amsterdam, Elsevier
		Recommended re	eading	
N. Ndjountche	2016	Digital Electronics 1 (Vol. 1)		John Wiley & Sons, Incorporated (electronic version)
S. Ločs, P. Drozdovs.	2019	Maintenance of Industrial Robot. Training material medžiaga (electronic version).		
K. Iniewski.	2017	Smart Sensors for Industrial Applications.		CRC Press
R. Towers, L. Ross, J. Masterson, S. Fardo	2010	Robotics: Theory and Industrial Applications.		Goodheart-Wilcox Publisher