

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Modern illumination technologies and light design	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. Pranciškus Vitta	Faculty of Physics

Study cycle	Type of the course unit (module)			
First cycle	Optional			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Permanent	V(autumn) semester	Lithuanian/English

Requirements for students						
Prerequisites:	Additional requirements (if any):					
Basic knowledge of physics, math and technical graphics.						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	137	74	63

Purpose of the course unit (module): programme competences to be developed

To introduce to the applications of physcs into the lighting field. To develop the competences of interdisciplinary collaboration. To provide with the practical and engineering knowledge of modern illumination systems, their structure and applications (design).

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
The students will manage to apply the theoretical knowledge to understand the cause of practical problem and to find the possible solution of it (1.3)	Problem lectures, seminars, brain-storming.	Tests, presentations.
The students will manage to plan, arrange and execute individual tasks substantially (5.3)	Seminars, laboratory works, accumulative folder	Presentations, lab-works reports
The students will learn how to find, process and apply the knowledge from internet, scientific reports and textbooks. They will manage to assess critically, analyze and process the information obtained from different sources (2.2, 5.3)	Lectures, case studies, information search, literature reading	Exam, lab-works reports
The students will learn how to understand the operation principles of modern technologies basing on physics knowledge (2.1)	Problem lectures, seminars, case studies.	Studies of complex cases, presentations.
The students will manage to apply the knowledge of optics, practical and engineering	Problem lectures, seminars, brain-storm, project method	Group work, presentation.

competences to understanding, analysing and	
development of optical systems (3.3)	
, , , ,	

Content: breakdown of the topics		Contact hours						Self-study work: time and assignments		
		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments	
1. Quantities of light and lighting, colours, measurements units.	2						2			
2. Perception of light and other psychophysical issues. Non-visual effects of light. Paradigm of Human centric lighting.	2		2		3		7	10	Preparation for the seminars and laboratory work.	
3. Basic parts of luminaire construction: housing, optical, electrical and control circuitry and components. Evolution of the most widely used types of light sources.	6				3		9	8	Preparation for the laboratory work	
4. Standards and legal regulations of illumination devices and applications.	2			2			4			
5. Illumination design and planning. The process of planning, main components, application objectives, utilization of daylight.	6		3				9	6	Preparation for the seminars.	
6. Control of illumination. Energy and economy efficiency, sustainability of illumination, and light pollution.	4			1	3		8	8	Preparation for the seminars and laboratory work	
7. Specific requirements and planning principles for the certain fields of lighting: artwork, educational, medical, office, home, industrial, retail etc.	6		2	3			11	4	Preparation for the seminars	
8. The principles and requirements of street and road lighting, traffic safety issues.	2		2				4			
9. Introduction to the main software packages for 3D architectural lighting planning (Dialux), raytrace optical design (Lucid Shape, Photopia) and data calculation and optimization.	2			16			26	24	Individual and teamwork exercises concerning light planning and visualization issues.	
10. Exam		1				1	2	3	Preparation for and taking exam	
Total	32	1	9	22	9	1	74	63		

Assessment strategy	Weigh t,%	Deadline		Assessment criteria
Accumulative mark	20	During semester	the	Assessment of the activity in seminars and exercises, and individual presentations.
Accumulative mark	20	During semester	the	Assessment of laboratory work performance and defence.

Individual work mark	20	During the semester	Assesment of the individual work consisting light planning and visualization tasks.
Exam	40	At the end of	Assessment of the knowledge by examination.
		the semester.	

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
David DiLaura, Kevin Houser, Richard Mistrick, Gary Steffy	2011	IES The lighting Handbook 10th Ed,	ISBN 987- 087995-241-9	New York, IESNA
G. Wyszecki and W. S. Stiles,	2000	Color Science. Concepts and Methods, Quantitative Data and Formulae.	ISBN-13: 978- 0471399186	New York, Wiley
E. F. Schubert 2003		Light-Emitting Diodes	ISBN 0 521 82330 7	Cambridge University Press, Cambridge, UK.
Optional reading				
Ch. Cuttle	2015	Lighting Design: A perception-based approach.	ISBN 978-0- 415-73196-6	Routledge, Taylor&Francis Group, London and New York.
A. Žukauskas	2008	Puslaidininkiniai šviestukai,.	ISBN 978- 9955-781-12- 7	Vilnius, Progretus, 2008