

COURSE UNIT DESCRIPTION

Course unit title	Code
Discrete Time Financial Models	

Lecturer(s)	Department, Faculty		
Coordinating: assoc. prof. Martynas Manstavičius	Department of Mathematical Analysis		
	Faculty of Mathematics and Informatics		

Study cycle	Type of the course unit		
First	Compulsory		

Mode of delivery	Semester or period when it is delivered	Language of instruction	
Face-to-face	7 th semester (autumn)	Lithuanian	

Requisites Prerequisites: Linear Algebra, Probability theory Co-requisites (if relevant):

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	125	48	77

Purpose of the course unit:	Purpose of the course unit: programme competences to be developed							
The aim is to develop stochastic modelling skills in discrete time, ability to recognise arbitrage opportunities in one								
	or several period models, distinguish complete and incomplete market models, price financial instruments traded.							
1	Fundamental concepts and results of mathematical finance will be analysed.							
The course fosters abstract and analytical thinking								
mathematical knowledge and demonstrate mathem								
(5.1, 5.2, 5.3) as well as develops knowledge of matrix involved $(71, 72, 74, 75)$	arkets, financial instruments, valua	ation of their price and risks						
Learning outcomes of the course unit	involved (7.1, 7.3, 7.4, 7.5) Learning outcomes of the course unit Teaching and learning Assessment methods							
Learning outcomes of the course unit	Teaching and learning methods	Assessment methods						
Knowledge and ability to explain the risk neutral	Traditional lectures,	testing, presentation, practical						
pricing principle of financial claims and ability	demonstrations, case studies,	assignments						
to state and explain at least one form of the first	group discussions	C						
fundamental theorem of asset pricing								
Ability to construct hedging strategies and price								
financial claims in simple discrete time financial								
models								
Ability to explain the passage to the limit in the								
CRR model leading to Black-Scholes formulas								
Ability to demonstrate analytical thinking and								
proper usage of concepts, principles and								
conventions of financial mathematics when								
solving practical problems								

		Contact hours					Individual work: time and assignments		
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship/work	Contact hours, total	Individual work	Assignments
1. Financial markets and traded assets. Diversity of financial instruments	1						1	1	Read and learn [2, Chap. II], solve problems at the end of the chapter; individually study suggested literature
2. One period model of a financial market	7	1					8	12	Read and learn [1, I.1-3], solve problems at the end of the chapter; individually study suggested literature
3. Valuation of financial claims. Complete and incomplete markets	2	1					3	5	Read and learn [1, I.4-5], solve problems at the end of the chapter; individually study suggested literature
4. Risk and return	3						3	5	Read and learn [1, I.6], solve problems at the end of the chapter; individually study suggested literature
5. First midterm test	3						3	5	Review literature and problem solutions. Prepare for the test
6. Multiple period model of a financial market	2	1					3	5	Read and learn [1, III.1-2], solve problems at the end of the chapter; individually study suggested literature
7. Martingales and arbitrage-free market	8	1					9	12	Read and learn [1,III.3-4], solve problems at the end of the chapter; individually study suggested literature
8. Binomial (CRR) model	7	2					9	12	Read and learn [1, III.5, IV.1-2], solve problems at the end of the chapter; individually study suggested literature
9. Second midterm test	3						3	5	Review literature and problem solutions; prepare for the test
10. American options	4	2					6	9	Read and learn [1, IV.3-4], solve problems at the end of the chapter; individually study suggested literature
11. Final exam								8	Review theory and problem solutions; Prepare for the exam
Total	40	8					48	77	

Assessment strategy	Weigh	Deadline	Assessment criteria	
	t %			
2 midterm tests	50 (25	During the	Each question and practical problem is given several points	
Each 3 hour test contains	each)	semester	for correct computations and mathematically precise	
closed-book theoretical part		after	explanations of the steps completed. Later points are	

and open-book practical assignment. The first test is from topics I through IV while the second is from topics VI through VIII.		relevant material is covered	converted to a 10 grade scale. 10 is awarded for 90-100% of points collected, 9 is given for 80-89% of points collected, etc.
Exam 2 hour long written exam covers topics I-IV, VI-VIII and X. As both tests, it contains a closed-book theoretical part and an open-book practical assignment	50	During exam period	The grading scheme is the same as that on the tests.

Author	Publishing year	Title	Issue of a periodical or volume of a publication; pages	Publishing house or internet site
Required reading		•		·
1. S.R. Pliska	1997	Introduction to		Oxford, Blackwell
		Mathematical Finance:		Publishers Inc.
		Discrete Time Models		
Recommended reading				
2. H. Föllmer, A.	2004	Stochastic finance: an	2 nd edition	Walter de Gruyter,
Schied		introduction in discrete		Berlin New York
Serie G		time		