

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Object-Oriented Programming ITOP

Annotation

Course focuses on essential object-oriented concepts and principles, encouraging information hiding and abstraction-based

thinking, and provides ideas and techniques to improve code readability, maintenance, and adaptability to change. Course

uses C++ and Java programming languages, and also addresses various tools and technologies as well as fundamental

sofware design patterns as solutions for typical problems. Course is intended for those having some background in

programming (ideally C, C++, Java, or a similar language).

Lecturer Department where the course unit is delivered

Coordinator(s): Irmantas Radavičius

Department of Computer Science II

Faculty of Mathematics and Informatics

Vilnius University

Cycle Type of the course unit

First Compulsory

Mode of delivery Semester or period when the course

unit is delivered

Languages of instruction

Auditorinė 2nd semester English and Lithuanian

Course requirements

Prerequisites: Programming fundamentals and basic IT knowledge

Number of ECTS credits

allocated

Student’s workload Contact hours Individual work

5 141 66 75

Purpose of the course unit: programme competences to be developed

Generic competences to be developed

• Ability for abstract thinking , processing and analysing information (BK3)

• Ability to use information and communications technologies (BK5)

Subject-specific competences to be developed

• Ability to apply general methods of the program design, make and analyse software requirements (DK1)

• Ability to analyse the algorithmic process of the task based on the general properties of the algorithm (DK2)

• Ability to develop the software project (or IT service) and to write its specification (DK3)

Learning outcomes of the course unit Teaching and learning

methods

Assessment methods

Ability to understand, write, modify, and execute given code

(in C++ or Java) Lectures

Studies of literature

Programing projects

Code reviews

Programming tests, exam
Ability to understand key concepts and principles of object

oriented programming paradigm, recognize and apply them in

practice

Ability to test and review given code, evaluate its

correspondence to the requirements and good practices Programing projects

Code reviews

Programming projects

Code reviews

Ability to understand, write, and evaluate reports and

specifiations and their correspondence to the requirements

and the provided code

Ability to search the official documentation for packages,

classes, methods, examples, and select the necessary

information.

Studies of literature

Programing projects
Programming tests, exam

Course content: breakdown of the topics

Contact hours

L
ec

tu
re

s

C
o

n
su

lt
at

io
n

s

S
em

in
ar

s

E
x

er
ci

se
s

L
ab

o
ra

to
ry

 w
o

rk

C
o

n
ta

ct
 h

o
u

rs

4

 4 8

4

 4 8

4

 4 8

4

 4 8

4

 4 8

4

 4 8

4

 4 8

4 4 8

 2

32 32 66

Individual work: time and

assignments

In
d

iv
id

u
a

l
w

o
rk

Assignments

Course overview. Programming primitives. Data

types, values and variables. Control structures.
4

Individual projects

4

4

4

4

4

Team project

4

4

8

3

75

Style requirements and good practices. Quality

code. Code reviews and unit testing.

Object-oriented programming paradigm. Classes

and objects. Fields and methods. Instance and static

members, access control, encapsulation. Principle

of information hiding. Object lifecycle,

constructors and destructors, memory management.

Exception handling. Multifile programs, modular

programming. Input and output streams. User

interface.

Composition. Delegation and single responsibility

principle. Containers. Shallow and deep object

copying.

Object oriented analysis and design. UML

language and tools, fundamental UML diagrams

Abstract classes and interfaces. Inheritance.

Polymorphism. Object-oriented principles.

Programming tests and feedback

Programming projects

Exam

Total:

Assessment

strategy

Weight

(perc.)

Deadline Assessment criteria

Individual

projects

30 During the semester During the semester each student is asked to provide five

submissions for three different projects, as well as five types

of reviews for other people in the course. Each stage (out of

5) is worth 0.6 points.

Team project 30 Last month of the semester The team project is carried out in small groups of students

(2-4 people). The project has three parts (each worth 1

point):

1) project proposal (team roles, UML diagrams, proof

of concept etc)

2) project essentials (essential functionality)

3) project demonstration (demonstration and

documentation)

Each student is evaluated individually, based on their

contribution and competence corresponding their role(s) in

the current project stage, their own work as well as quality

of the reviews given for other projects in the course.

Programming

tests

20 First test – Week 7

Second test – Week 15

Each test is worth 1 point, while exam is worth 2 points.

Each of them contains multiple problems of various types

and difficulty to solve (50%) as well as a programming

assignment (50%). Evaluation is based on the correctness of

the solution as well as (for the programming assignment)

adherence to proposed good coding practices and general

code quality. If a student gets less than 50% of the maximal

score, it is evaluated as 0.

To be allowed to take the exam, during the semester each

student has to provide at least 24 (proper) reviews and make

at least 5 (proper) submissions (out of 8 for both individual

and team projects). To pass the course, the total sum of

points for the exam has to be at least 50% of the maximum,

otherwise the student must repeat the course.

Exam 20 During the exam session

Externe students This course can be attended by externe, provided it was attended normally before, and the

points received previously are considered appropriate. In such case the externe gets to only

repeat the exam. For this, the externe must inform the lecturer in the beginning of the

semester, getting a written confirmation with an account of points to be transfered from an

earlier year. If the amount of points is not sufficient and thus work and re-evaluation during

the semester is required, externe attendance is not allowed.

Author Year Title Issue

or vol.

Publishing house

or Internet site

Required reading

A. Brilingaitė 2012 Object-Oriented Programming.

Study Guide

Bruce Eckel 2000 Thinking in C++ 2nd ed. https://archive.org/details/TI

CPP2ndEdVolOne

Bruce Eckel 2003 Thinking in C++, Volume

Two: Practical Programming

1st ed. https://archive.org/details/TI

CPP2ndEdVolTwo

Oracle The JavaTM Tutorials https://docs.oracle.com/javas

e/tutorial/index.html

Bruce Eckel 2006 Thinking in Java 4th ed. Pearson

Recommended reading

Erich Gamma, Richard

Helm, Ralph Johnson,

John Vlissides

1994 Design Patterns: Elements of

Reusable Object-Oriented

Software

1st ed. Addison-Wesley
Professional

C. Larman 2015 Applying UML and Patterns: An

Introduction to Object-Oriented

Analysis and Design and Iterative

development

 Prentice-Hall

https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolOne
https://archive.org/details/TICPP2ndEdVolTwo
https://archive.org/details/TICPP2ndEdVolTwo
https://docs.oracle.com/javase/tutorial/index.html
https://docs.oracle.com/javase/tutorial/index.html

