

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
General Physics I (MECHANICS AND THERMODYNAMICS)	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. J. Jurkevičius	Faculty of Physics,
Other(s): dr. S. Balčiūnas	Saulėtekio al. 3, NFTMC, LT-10257, Vilnius.

Study cycle	Type of the course unit (module)
First	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Auditorium	1 (Autumn) semester	Lithuanian/English

Requirements for students					
Prerequisites: Additional requirements (if any):					
None	None				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
10	260	160	100

Purpose of the course unit (module): programme competences to be developed								
 By the end of the course of mechanics students 	• By the end of the course of mechanics students are expected to be able to understand and analyze processes of							
kinematics and dynamics of particles and bodie	es, formulate problems and solve t	asks.						
 By the end of course of thermodynamics stude 	nts are expected to be able to unc	lerstand nature of heat						
exchange, to describe processes of heat mathe	matically, explain thermodynamic	processes and to solve tasks.						
Learning outcomes of the course unit (module) Teaching and learning Assessment methods								
methods								
Know and understand the physical laws of the	Lectures with visual	Tasts discussion written even						
mechanics and thermodynamics (1.1)	rnamics (1.1) Tests, discussion, written exam							
To be able to formulate and solve the problems	Sominars (solution of tasks)	Sominars tosts written evam						
of the mechanics and thermodynamics (1.2) Seminars (solution of tasks) Seminars, tests, written exam								
Investigate practically the basic laws of the	vestigate practically the basic laws of the							
mechanics and thermodynamics (1.3, 3,4)	Consultation, laboratory work	Discussion						

	Contact hours				Se	lf-study work: time and assignments			
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
Mechanics									
1. Introduction. The object and aim of physical studies. Fundamental quantities. Dimensional analysis. Measurements.	1			1			2	2	
2. One-dimensional motion. Displacement, speed, velocity, acceleration. Motion diagrams, kinematic equations.	1			1			2	2	
3. Vectors and Scalars. Coordinate systems. Vector properties and operations.	1	1		1			3	2	-
4. Two-dimensional motion. Kinematic vectors. Projectile motion. Circular motion. Tangential and normal acceleration.	1	1		1			3	2	_
5. Laws of motion. Force. Newton's first law, inertial frames. Mass. Newton's second law. Gravity and weight. Newton's third law. Friction.	2	1		2			5	3	
6. Newton's laws in application. Circular motion. Motion in non-inertial frames. Euler method for dynamic problems.	2	1		2			5	3	
7. Work and kinetic energy. Work and force. Kinetic energy and work-kinetic energy theorem. Power.	1	1		1			3	2	
8. Potential energy and conservation of energy. Conservative and non- conservative forces. Energy diagrams.	1	1		1			3	2	Related problems and
9. Momentum and collisions. Conservation of momentum. Elastic and non-elastic collisions. Center of mass. Motion of a particle system. Rocket motion.	2			2			4	2	assignments (topically corresponding).
10. Rotation of a rigid body. Angular kinematics. Rotational energy. Moment of inertia. Torque. Work, power and energy of rotational motion.	2			2			4	2	
11. Rolling motion and angular momentum. Angular momentum of a particle and a system of particles. Conservation of angular momentum.	2			2			4	2	
12. Static equilibrium and elasticity. Condition for equilibrium. Deformation and elastic properties of solids.	2			2			4	2	
13. Oscillations. Harmonic oscillator, its energy. Pendulum. Circular description of a harmonic oscillator.	2	1		2			5	3	
14. Gravity. Newton's law of universal gravitation. Free fall acceleration and the force of gravity. Kepler's laws. Gravitational field and potential energy.	2	1		2			5	3	
15. Fluid mechanics. Pressure. Buoyancy. Fluid dynamics. Bernoulli equation. Dynamic lift.	2			2			4	2	1

16 Wayse One dimensional travelling ways	2		1	2	1	1	4	2	
16. Waves. One-dimensional travelling wave.	2			2			4	2	
Superposition and interference. Speed of wave									
propagation. Reflection and transmission.									
Sinusoidal waves. Linear wave equation.	_			_			_	_	
17. Sound waves. Speed of sound. Periodic sound	2			2			4	2	
waves. Spherical and flat wavefront. Doppler									
effect. Standing waves, resonance, beats.									
Related laboratory assignments. During the					16		16	14	
semester 6 lab assignemnts ar due, 1 of which is a									Laboratory work in the
study of measurement uncertainties statistics, and									mechanics lab.
5 – related to randomly assigned topics.									
Total (1/2):	28	8	0	28	16	0	80	50	
1	ermo	odina	mika	-				-	
18. Temperature, heat exchange. The 0th law of	6	1		6			13	8	Determination of latent
thermodynamics, temperature measurement, heat									heat of metals by
capacity, heat conductivity.									cooling.
19. Heat and work , mechanical equivalent of heat.	2	1		2	3		8	8	
Heat and the 1st law of thermodynamics.									
Thermodynamic processes. Laws of ideal gases.									
Processes in ideal gases.									
20. Kinetic interpretation of heat energy. Kinetic	4	1		4	3		12	6	Measurement of
interpretation of pressure and temperature of					_			-	viscosity and mean free
gases. Specific heat capacities of monoatomic and									path of molecules of
other gases. Law of equipartition of energy.									air.
	6	1		6	4		17	10	Measurement of
21 .Kinetic theory of real gases. Mean free path.		_		•					viscosity and mean free
Maxwelian distribution of molecular speeds.									path of molecules of
Brownian motion. Van der Waals equation. Critical									air. Measurement of
parameters. Metastable phases. Joule–Thomson									ratio of isochoric and
effect. Liquidification of gases. Low temperatures.									isobaric specific heat
									capacities of a gas.
	2	1		2	2		7	4	Determination of
	-	-		-	-		ŕ		molecular weight of
									vapour by Meyer
22 .Entropy and the 2nd law of thermodynamics.									apparatus.
Reversible and irreversible processes. Carnot cycle.									Measurement of
Heat engines and their efficiency.									specific heat
									conductivities of
									thermal insulators.
	5	2		5	4		16	8	Production and
23. The 3rd law of thermodynamics. Entropy of	5	2		5	-		10	0	measurement of
reversible and irreversible processes.									vacuum.
24. Thermodynamic potentials. Thermodynamic	3	1		3			7	6	Thermal expansion of
stability of systems.	5	1		5			ľ	0	solids.
Total	20	8		20	16		00	50	501103.
Iotai	۷ð	õ		28	10		80	50	

Assessment strategy	Weigh	Deadline	Assessment criteria
	t,%		
			Exam (written and oral) answers, their correctness and
Exam (mechanics)	25 Session time	25 Session time	accuracy. Examination is allowed after defending all of
			the laboratory work reports.
Colloquium results	10	Throughout	Written. Problem solutions and answers, answers to
(mechanics)	10	entire semester	theoretical questions.
Laboratory report defense	15	Throughout	Oral defense of report with written report presented at
(mechanics)	12	entire semester	the time. The quality of report, completion of tasks,

			explanations of results and ability to answer theoretical questions.
Exam (thermodynamics)	25	Session time	Exam (written) answers, their correctness and accuracy. Examination is allowed after defending all of the laboratory work reports.
Colloquium results (thermodynamics)	20	Throughout entire semester	Written. Problem solutions and answers, answers to theoretical questions.
Laboratory report defense (thermodynamics)	5	Throughout entire semester	Oral defense of report with written report presented at the time. The quality of report, completion of tasks, explanations of results and ability to answer theoretical questions.

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
Halliday D., Resnick R., Walker J.	2010	Fundamentals of Physics		Wiley
Matvejevas A.	1986	Molekulinė fizika		Vilnius: "Mokslas"
Optional reading				
Feynman, R.	1963	Lectures on Physics	Vol. 1	https://www.feynmanlecture s.caltech.edu/
Artkan G.B., Greiffing D.F., Kelly D.C., Priest J.	1989	University Physics		N.Y., Academic Press
Wolfson R., Pasachoft J.M.	1987	Physics		Boston-Toronto-L-B corp.
Weidner R.T.	1989	Physics		Boston, Allyn and Bacon Inc.