Course unit (module) titl	Code			
Systems biology				
Lecturer(s)	Department(s) where the course unit (module) is delivered			
Coordinator: Violeta Mikštienė, PhD, Audronė Jakaitienė, PhD	Faculty of Medicine			
Other(s): E. Pranckevičienė, PhD, A. Urnikytė, PhD, E. Siavrianė, PhD, K. Šablauskas, G. Alzbutas, PhD, S.				

Gražulis, PhD, L. Petkevičius, PhD

Study cycle	Type of the course unit (module)					
Second cycle	Compulsory					

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face, self-study Lectures, seminars and practice	3 rd semester	English

Requirements for students						
Prerequisites:	Additional requirements (if any):					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	66	74

Purpose of the course unit (module): programme competences to be developed

The purpose of the course is to provide students with the understanding of the most important computational methods used in systems biology, as well as provide them with the insights into common wetlab experiments used in generating the data. After completing this course, students should be capable of designing experiments to answer broad biomedical questions at the levels of the organism, tissue or cell.

Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods
	methods	
2.1. Be able select an appropriate modelling strategy	Lectures, debates, group	
for a given biological domain and problem	discussion, journal club	
2.2. Be able to gather and analyse information on	Lectures, debates, group	
subjects related to systems biology with a critical	discussion, journal club	
approach, and to carry out a technological watch		
3.1 Be able to apply modern research methods in	Lectures, debates, group	T Witten
systems biology	discussion	I wo presentations; written
4.1. Design computational biology experiment to	Debates, group discussion s	examination.
solve practical issues in basic and applied life		
science.		
5.1 Be able to work autonomously and as a part of a	Lectures, debates, group	
multidisciplinary team; act honestly and according	discussion	
to ethical obligations		

	Contact hours								Self-study work: time and assignments		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments		
1. Object of Systems biology Tutors: V. Mikštienė, A. Jakaitienė	2						2	6	Self-study of scientific papers on overview of the System Biology. Recommended literature: Alon, U. (2019). An introduction to systems biology: design principles of biological circuits: https://sysbio.mx/wp = content/uploads/202 1/02/Uri-Alon-An- Introduction-to- Systems-Biology - Design-Principles- of-Biological- Circuits-CRC-Press- 2020.pdf		
2. Phylogenetic analysis of genomes and metagenomes Tutor: G. Alzbutas	4			4			8	9	Mamal virus filogenetic analysis		
3. ChIP-seq analysis; DNA-protein interactions and Sequence Motifs Tutor: E. Pranckevičienė	4			4			8	9	Self-study of background papers on ChIP-seq technology and motif analysis. Open access Pubmed Central IDs: PMC4121056,PMC 4763482,PMC54442 49, PMC4022013. Reproduction and discussion of the ChIP-seq analysis exercise in Galaxy Training Material https://training.galax yproject.org/training = material/topics/epige netics/tutorials/tal1- binding-site-		

							identification/tutoria <u>l.html</u> . Group study of the analysis protocol used in the underlying example paper of Wu et al., Genome Research 2014, PMC4248312.
4. Gene Regulatory Networks Tutor: A. Urnikytė	2		4		6	8	Self-study of Tutorials material provided by the lecturer. Preparation for practice assignment. Recommended reading: M.arian Walhout, M. Vidal, J. Dekker. Handbook of Systems Biology (2012), Chapter 4.
5. Discovering Quantitative Trait Loci (QTLs) Tutor: E. Siavrienė	2		4		6	7	Self-study (reading and analysing related literature). Recommended reading: R. J. Brooker (2006), Chapter 25
6. Metabolomic pathways and Pathway Enrichment Tutor: dr. J. Songailiené	4		4		8	9	Self-study (reading and analysing related literature). Recommended reading: Uttam Garg Laurie Smith Biomarkers in Inborn Errors of Metabolism (2017)
7. Source of data in experimental structural biology: CryoEM, X-ray crystallography Tutor: S. Gražulis	2		2		4	5	Self-study (reading and analysing related literature (recommended reading: Structural Bioinformatics (Methods of Biochemical Analysis, V. 44) by Philip E. Bourne, Helge Weissig (Editors)); and available open access databases (PDB, COD)). Submission of

							computational assignments.
8. Markov and Hidden Markov Models of Genomic and Protein Features Tutors: E. Pranckevičienė, A. Jakaitienė	4		4		8	10	Self-study (reading and analysing topic related papers). Recommended reading: L. Wasserman (2004), Chapter 23 Practical analysis of the HMM algorithm application for classification of 16S rRNA gene sequences from https://doi.org/10.1 016/j.ygeno.2012.0 1.008. Retrieval of 16S sequences and analysis of the analysed algorithm reproducibility.
9. Deep Learning in Computational Biology Tutor: K. Šablauskas, Linas Petkevičius	4		4		8	9	TBA
10. Synthetic Biology and Novel therapeutics Tutor: K. Šablauskas, V. Mikštienė	4	4			8	9	Self-study of scientific papers on principles and design of novel therapeutics – bioengineering, genome-driven pharmacotherapy, stem cell therapy, gene/genome editing.
l otal	32	4	30		00	/5	

Assessment strategy	Weight,	Deadline	Assessment criteria
	%		
Seminar/Practice assessment	50%	Topics 2-10	Students perform and submit all exercises/tasks/presentations in each topic. The performance of seminar/practical work is assessed on a scale of 1-10 in each topic. Weighted average is calculated. The weights correspond to the practice part of the topic throughout the course
Exam	50%	3 working days after last lecture or seminar	Test type exam from all topics (2 questions from each topic)

Author	Year of publi catio n	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				

Marian Walhout, Marc	2012		Handbook of Systems Biology:	ISBN: 978-0-	Academic Press
Vidal, Job Dekker			Concepts and Insights	12-385944-0	
- -					
Rober J. Brooker	2006		Genetics analysis and principles,	ISBN-13: 978-	Academic Press
			3rd edition	0071287647	
Larry Wasserman	2004		All of statistics: a concise course	ISBN 978-1-	New York: Springer.
			in statistical inference (Vol. 26).	4419-2322-6	
Should be added					
Optional reading					
Lawrence R. Rabiner	1989	At	tutorial on hidden Markov models		Proceedings of the IEEE 77,
		and	d selected applications in speech		no. 2 (1989): 257-286
		rec	cognition.		https://web.ece.ucsb.edu/Facul
			-		ty/Rabiner/ece259/Reprints/tut
					orial%20on%20hmm%20and
					<u>%20applications.pdf</u>
