

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Applied electronics 1	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: prof. Vincas Tamošiūnas	Faculty of Physics
Other(s): dr. Linas Minkevičius	

Study cycle	Type of the course unit (module)				
First (bachelor studies)	Compulsory				

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lectures, seminars, laboratory works	III (autumn) semester	Lithuanian/English

Requirements for students						
Prerequisites:	Additional requirements (if any):					
"Electricity and Magnetism" or similar general physics						
course.						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	133	64	69

Purpose of the course unit (module): programme competences to be developed								
To provide knowledge of applied electronics and ability to: apply theoretical knowledge for the development of								
electronic circuits with required properties; efficiently analyze information in literature sources about electronics;								
apply modern computer-based simulations of electronic circuit performance; explain the operation of electronics								
circuit(s) based on semiconductor and general physics knowledge.								
Learning outcomes of the course unit (module) Teaching and learning Assessment methods								
	methods							
Ability of the student to apply theoretical	Laboratory works	Control questions, evaluation						
knowledge for the investigation of properties of		of results, reports and						
devices and electronic circuits; ability to		conclusions.						
understand the causes of the problems and								
solution possibilities (1.1, 1.2)								
Ability to apply modern electronic circuit	Seminars in computer classes	Evaluation if student is able to						
simulation methods, for example, within LTSpice		simulate independently the						
software package (2.4)		operation of the given circuit.						
Acquisition of theory knowledge required for	Lectures	Multiple choice test, exam in						
solution of practical problems in electronics(1.3);		written form.						
ability to understand the literature about								
electronics, to exchange information and to								
present results (2.2); ability to understand,								
interpret and apply knowledge in electronics field								
; acquisition of knowledge required for								

understanding the operating principles of the	
circuits (3.2)	

			Cont	tact h	ours			Self-study work: time and assignments	
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work placement	Contact hours	Self-study hours	Assignments
1. Introduction. History of electronics and current directions of research. Major circuit components and their marking. Laboratory works: Introduction with all work stands and equipment. Work safety.	1				4		5		
2. Basic circuits and methods of analysis. Kirchhoff's circuit laws, Thévenin's and Norton's theorems. Voltage divider, RC, RL, resonant circuits. Laboratory work: RC and RL circuit. Laboratory work defence. Seminars: get familiar with LTSpice circuit simulation program and to simulate the basics circuits.	3		2		4		9	10	Preparation for laboratory works, reports writing. Repetition for exam.
3. Diodes and their applications. Introduction to semiconductors, valence and conduction bands, semiconductor doping. p - n junction its' current–voltage curve and capacitance. Half- and full- wave rectification circuits, Zener diodes. Other applications of diodes. Laboratory work: rectification circuit and Zener diode. Laboratory work defence.	2				4		6	8	Preparation for laboratory works, reports writing. Repetition for exam.
4. Transistors and amplifiers. Bipolar transistor, field effect transistors and amplifier stages with them. A, B, AB class amplifiers, their properties, limitations and power. Laboratory work: Bipolar transistor or field effect transistors and amplifier circuit. Frequency dependence of gain and phase of the transistor amplifier. Laboratory work defence. Seminars: Amplifiers circuit simulation using LTSpice program.	6		2		4		12	14	Preparation for laboratory works, reports writing. Repetition for exam.
5. High-power applications. Switching with transistors and operation of inverter circuits. High-power MOSFET, thyristors, application peculiarities of silicon switched rectifiers and diodes. Power supplies and DC-DC conversion.	2						2	4	Repetition for exam.
6. Feedback role in amplifiers and generator. Dependence of amplifier properties on the feedback. Amplitude and phase balance conditions for signal generation. Wien bridge oscillator. Generator circuits based on op-amps. Transistor- based generators. Laboratory work: two-stage RC - generator. Laboratory work defence. Seminars:	3		2		4		9	10	Preparation for laboratory works, reports writing. Repetition for exam.

feedback influence simulation in amplifiers circuits						
using LTSpice.						
7. Applications of operational amplifiers (op-	9	2	4	15	14	Preparation for
amps). Properties of op-amps and simplified rules						laboratory works,
for the analysis of op-amp based circuits. Comparator, inverting and non-inverting						reports writing. Repetition for exam.
amplifiers, differential amplifier, electronic						Repetition for exam.
integrator and differentiator circuits, active filters						
with op-amps. Laboratory work: Feedback in op-						
amp circuits. Laboratory work defence. Seminars:						
op-amps circuits' simulation using LTSpice						
program.	-		 		_	
8. Pulse width modulation (PWM) and their	2			2	3	Repetition for exam.
application in D class amplifiers. PWM signal generation using comparators.						
9. Circuits for digital electronics. Base-2 numeral	1			1	2	Repetition for exam.
system, basic operations of Boolean algebra and						
circuits for their implementation.						
10. Analog to digital (ADC) and digital to analog	1			1	2	Repetition for exam.
(DAC) conversion and information transmission.						
ADC and DAC conversion circuits.						
11. Optoelectronic devices. Light emitting diodes,	2			2	2	Repetition for exam.
photodiodes, data transmission through fiber						
optics systems.						
Total	32	8	24	64	69	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Laboratory work rating	30*	All	Preparation to answer theoretical questions, quantity of
		course	errors in circuit connection, the quality of the work
			description, ability to describe the results. Evaluation in 10
			scores system, the final score is multiplied by the weight
			coefficient.
			* It is obligatory to finish all laboratory works.
Seminars rating	10	All	Ability to understand and accomplish the tasks during the
		course	seminars
Test	10	End of	10 questions with multiple choices. Correct choice adds 1
		the	point, incorrect choice – subtracts 1 point. It is possible not
		course	to answer the question. Final score is multiplied by the
			weight coefficient.
Exam (written form)	50	During	5 open questions. Assessment of answer particularity,
		the exam	consistency and mistakes.
		session	

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
D. E. Eggleston	2011	Basic electronics for scientists and engineers		Cambridge University Press, (yra MKIC Technologijos mokslų skaitykloje)
S.M. Sze	2007	Physics of semiconductor devices		Wiley Interscience (yra MKIC Technologijos mokslų skaitykloje).
Optional reading				
Keith Brindley		Starting Electronics (Fourth		Newnes; 4 edition

	Edition)	(September 23, 2011) http://dx.doi.org/10.1016/B9 78-0-08-096992-3.00023-8
lan Sinclair	Electronics Simplified Previously published as Electronics Made Simple (Third edition)	Newnes; 3 edition (May 31, 2011) http://dx.doi.org/10.1016/B9 78-0-08-097063-9.10022-6
Paul Scherz, Simon Monk	Practical Electronics for Inventors, Fourth Edition	McGraw-Hill Education TAB; 4 edition (March 24, 2016)
	Electronics-Tutorials	http://www.electronics- tutorials.ws/