

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code	
Nonparametric statistics		
L octuror(s)	Department(c) where the cour	so unit (modulo) is dolivorod

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: assoc. prof. Jurgita Markevičiūtė	Faculty of Mathematics and Informatics
	Institute of Applied Mathematics
	Department of Statistical Analysis

Study cycle	Type of the course unit (module)		
First	Compulsory		

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to- face	Fifths (autumn) semester	English/Lithuanian

Requirements for students					
Prerequisites: Mathematical analysis I and II, Probability	Additional requirements (if any): -				
theory, Research Data Analysis, Parametric statistics					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	150	64	86

Purpose of the course unit (module): programme competences to be developed						
The goal of the course is to introduce nonparametric hypothesis testing methods, to understand the differences between parametric and nonparametric hypothesis testing, to be able to choose the suitable method and apply to a practical situation, enhance critical and analytical thinking.						
Learning outcomes of the course unit (module) The student after the course:Teaching and learning methodsAssessment methods						
 will be able to describe nonparametric tests; will be able to apply nonparametric tests for real data analysis; will be able to apply nonparametric tests using R software; will be able to choose suitable criteria for hypothesis testing according to the assumptions; will demonstrate the understanding of terminology, methods and principles; will be able to demonstrate ability solve the task that requires understanding of field concepts. 	<i>Lectures</i> devoted for the theoretical results and practical case studies. <i>Labs</i> , devoted to the practical problem solving with R. <i>Self study</i> for the additional problem solving and preparing for exam and control works.	Practical tasks with computer, mid-term exam, exam.				

Content: breakdown of the topics	Contact hours	Self-study work: time and assignments

	Lectures	Laboratory work	Exercises	Contact hours	Self-study hours	Assignments
1. Hypothesis testing: parametric vs.	4	4		8	10	Read [1, 4.1, 4.2 ch.], [2, 3.2 ch.] and
nonparametric criterias.						solve the tasks in the chapters; Read [1, 5
						ch. introduction], [3, 1.1 ch.]
2. Contingency tables. Chi squared criteria for	4	4		8	10	Read [1, 5.2 ch.], [2, 3.5 ch.], [4, 2 ch.],
independence and homogeinity.						solve the tasks in the chapters.
3. Goodness of fit criteria based on distance	8	6		14	16	Read [1, 5.1.3-5.1.6 ch.], [4, 3 ch.],
Kolmogorov-Smirnov, Cramer-Mises,						solve the tasks in the chapters.
Anderson-Darlingo criterias.						
4. Rank criterias. Ranks and their properties.	12	14		26	26	Read [1, 5.3, 5.4 ch.], [3, 1 ch.], [4, 4
						ch.], solve the tasks in the chapters.
5. Other nonparametric criterias	4	4		8	8	Read [1, 5.1.1], [4, 5 ch.], solve the tasks
						in the chapters.
Preparation for te middle-term exam and exam.					16	Repeat all the course material.
Total	32	32		64	86	

Assessment strategy	Weight	Deadline	Assessment criteria
Mid-term exam Mid-term written exam lasts 1 academic hour. Students should solve practical problems. It is allowed to have	<u>,%</u> 20	Middle of the semester	Task are evaluated according to what part of problem is solved. Points are converted into mark at 10 points scale according to formula: $m = \frac{10 \cdot x}{y},$ where m – is a final mark of a mid-term exam at 10 points scale, x – number of points the student got during the mid-term exam, y –
one A4 format paper with formulas and definitions.			maximal number of points in the mid-term exam.
Practical tasks with computer	20	During semester	Task are evaluated according to what part of problem is solved. Points are converted into mark at 10 points scale according to formula:
8 tasks during the semester, for each task 15 minutes are given to submit solution.			$p = \frac{1}{8} \sum_{i=1}^{8} \frac{10 \cdot x_i}{y_i},$ where p - is a final mark of practical tasks with computer at 10 points scale, x_i - number of points the student got during the i-th task, y_i - maximal number of points in the i-th task.
Final exam Final written exam 2 academic hours. Students should solve practical problems and answer theoretical questions. It is allowed to have two A4 format paper with formulas and	60	During exam session	Task are evaluated according to what part of problem is solved or answered to the theoretical question. Points are converted into mark at 10 points scale according to formula: $e = \frac{10 \cdot x}{y},$ where e – is a final mark of the exam at 10 points scale, x – number of points the student got during the exam, y – maximal number of points in the exam.
definitions. Final mark of the cours	e is obtain	ed by the formula <i>final m</i>	ark = 0, 2m + 0, 2p + 0, 6e.
		•	

Author	Year	Title	Issue of a	Publishing place and house
	of		periodical	or web link

	publi		or volume	
	catio		of a	
	n		publicatio	
			n	
Compulsary reading				
1. J. P. Marques de Sa	2007	Applied Statistics Using	2nd edition	https://link.springer.com/content/pdf/10.
		SPSS, STATISTICA,		1007%2F978-3-540-71972-4.pdf
		MATLAB and R		
2. V. Čekanavičius ir G.	2000	Statistika ir jos taikymai.	I part	Vilnius, TEV
Murauskas				
3. V. Čekanavičius ir G.	2002	Statistika ir jos taikymai.	II part	Vilnius, TEV
Murauskas				
4. V. Bagdonavičius ir J.	2007	Matematinė statistika	III part	http://www.statistika.mif.vu.lt/wp-
Kruopis			-	content/uploads/2014/04/Bagdo_Kruop_
				Matem_stat_3dalis_2015.pdf
Optional reading		·		·
5. R.V. Hogg ir E.A.	1988	Probability and statistical	3rd edition	Niujorkas-Londonas, Macmillan
Tanis		inference		
6. M. L. Berenson, D. M.		Basic business statistics.	5th edition	Prentice hall, Englewood Cliffs, New
Levine		Concepts and Applications		Jersey