

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) tit	Code					
Microwave Electronics						
Lecturer(s)	Department(s) where the cours	se unit (module) is delivered				
Coordinator: Prof. Alvydas Lisauskas	Physics Faculty, Institute of A	Applied Electrodynamics and				
Telecommunications						

Other(s):

Learn operating microwave sources for physical and technological research

Study cycle	Type of the course unit (module)				
Second	Obligatory				

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction	
Lectures	III (autumn) semester	Lithuanian	

Requirements for students							
Prerequisites: Additional requirements (if any):							
Course in the subject of semiconductor physics							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	64	76

Purpose of the course unit (module): programme competences to be developed									
This course provides the student with the concepts required for physical understanding, design and test of high-speed electronic devices. Topics include standard electronic devices and circuits used in microwave frequency range as well as discussion on technology trends for high-speed electronics. The course is complemented with practical exercises including tasks on high-frequency design and testing techniques									
Learning outcomes of the course unit (module) Teaching and learning Methods Assessment methods									
To understand and to be able explain the operation principles of microwave semiconductor devices	Lectures, self-study	Colloquium, written exam							
To be able to characterize of microwave devices, their frequency and power characteristics	Lectures, self-study, laboratory works	Completion of laboratory works							

works

Lectures, self-study, laboratory

Completion of laboratory works

Content: breakdown of the topics		Contact hours					Self-study work: time and assignments		
		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction into microwave electronics	2	•					2	2	Literature reading
2. Electronic transport in crystal lattice	2						2	4	Literature reading
3. Microwave diodes: P-I-N diode; Schottky diode; Gunn diode; IMPATT diode; Resonance tunneling diode	12				16		28	34	Literature reading, perform laboratory works
4. Microwave transistors: High electron mobility transistors, metal-oxide- semiconductor transistors; Heterojunction transistors, Ballistic transport	16				16		32	36	Literature reading, perform laboratory works
Total	32				32		64	76	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria		
Laboratory works	100	Semester	Students must perform following laboratory works:		
			P-i-n attenuator and modulator.		
			Gunn generator.		
			IMPATT generator.		
			Switching characteristics of microwave bipolar transistor.		
			Microwave amplifier with Field Effect Transistor		
			Short pulse generator with avalanche transistor.		
Colloquium	60	Semester	S1: Electronic transport in crystal lattice		
			S2: Operation of microwave diodes		
			S3: Microwave transistors		
			S = 0,2*S1+0,4*S2+0,4*S3		
Exam	40	Session	For the exam the completion of laboratory work assignments		
			is compulsory.		
			Exam consists from two theory tasks (E1 and E2) and written		
			exercise (E3). Each task is evaluated in 10 grade system. The		
			weights for the final grade are:		
			E = 0,4*E1+0,4*E2+0,2*E3 Final: 0,6*S + 0,4*E		

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Simon M. Sze	2001	Semiconductor Devices: Physics and Technology	2nd Edition	Wiley
Kevin F. Brennan, April S. Brown	2002	Theory of Modern Electronic Semiconductor Devices		Wiley
William Liu	1999	Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs		Wiley

Optional reading			
M. Lundstroem	2003	Fundamentals of Carrier	Cambridge Univ. Press
		Transport	_
Simon M. Sze	1997	Modern Semiconductor	Wiley
		Device Physics	
		-	