

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) titl	Code					
Theory of Sol-Gel Processing						
Lecturer(s)	se unit (module) is delivered					
Coordinator: Prof. Aivaras Kareiva	Institute of Chemistry					

Other(s):

Study cycle	Type of the course unit (module)				
Second	Elective				

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face to face	1st semester	English

Requirements for students							
Prerequisites:	Additional requirements (if any):						
The main objectives from first cycle of							
Chemistry, or Biochemistry, or Chemical							
Engineering programmes of studies.							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	135	32	103

Purpose of the course unit (module): programme competences to be developed Ability to explain the principles of modern methods used for the synthesis of classical and nanomaterials. Ability to explain processes taking place during the sol-gel synthesis and formation of materials. Ability to characterize the properties and possible applications of sol-gel derived materials and explain their peculiarities. **Teaching and learning** Learning outcomes of the course unit (module) **Assessment methods** methods Lectures, Laboratory work, Final exam (written form)

After successful completion of this course student should be able to:	Self-study	
Determine the peculiarities of methods		
used for the synthesis of classical and		
nanomaterials.		
Determine the peculiarities of sol-gel		
processing.		
Explain modern methods of materials		
formation and application.		
Explain properties of inorganic functional		
materials.		

		-	Con	tact h	ours			Self-study work: time and assignments	
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Electrolytic dissociation. Acid-base equilibrium in solutions. Hydrolysis. Buffer solutions.	4							10	
2. Fundamentals of sol-gel processing. Hydrolysis and condensation reactions in the aqueous solutions of inorganic salts of transition metals.	4							10	
3. Role of the anion on the hydrolysis and condensation reactions in the aqueous solutions of inorganic salts of transition metals	4							13	
4. Solution chemistry of transition metal alkoxide precursors. Sol-gel chemistry route to the preparation of different ceramic materials.	4							14	
5. High-T _C Superconductors. Mixed-Metal Garnets. Nanoparticles, Nanowires, Nanorods. Thin Films.	2				2			14	
6. Sol-gel design of bioceramics. Synthesis of hydroxyapatite using different sol-gel methods. Characterization of obtained CHAp materials.	2				2			14	
7. Synthesis of lanthanide-doped CHAp samples. Investigation of luminescent properties. Sol-gel derived CHAp thin films.	2				2			14	
8. Synthesis of low crystallinity tricalcium phosphate. Conservation sol-gel chemistry.	4							14	
Total	26				6			112	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria		
Final exam	100	January 26	Answering into open type questions.		
	%				
	/0				

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
C. J. Brinker, G. W.	1990	Sol-Gel Science: The		Academic Press, London.
Scherer.		Physics and Chemistry of		
		Sol-Gel Processing.		

Sanchez.	1988	Progr. Solid State Chem., 18, 259	
F. A. Bettelheim, W. H. Brown, M. K. Campbell,	2009	INTRODUCTION TO General, Organic and	Mary Finch, USA
S. O. Farrell.		Biochemistry.	
Optional reading			
	2010	PRINCIPLES OF	Wiley
John N. Lalena, David A.		INORGANIC	
Cleary		MATERIALS	
A 17 1 1	2011	DESIGN	
A. Kareiva et al.	2011- 2017	Materials Science	
	2017	<i>(Medžiagotyra),</i> 17 (2011) 428-437.	
		J. Sol-Gel Sci. Technol., 64	
		(2012) 643-652.	
		J. Lumin., 136 (2013) 17-	
		25.	
		J. Lumin., 147 (2014) 290-	
		294.	
		<i>Ceram. Int.</i> , 41 (2015) 4504-4513.	
		Surf. Coat. Technol., 307	
		(2016) 935-940.	
		<i>J. Sol-Gel Sci. Technol.</i> , 81 (2017) 261-267.	