

COURSE UNIT DESCRIPTION

Course unit title Course unit code

Functional programming

Lecturer(s) Department where the course unit is delivered

Coordinator: doc. dr. Linas Laibinis

Other lecturers:

Department of Computer Science

Faculty of Mathematics and Informatics

Vilnius University

Cycle Type of the course unit

1
st
 (BA) Compulsory

Mode of delivery Semester or period when the course

unit is delivered

Language of instruction

Face-to-face 7
th

 semester English, Lithuanian

Prerequisites

Prerequisites: Informatics fundamentals, Data Structures and Algorithms

Number of credits

Allocated

Student‘s workload Contact hours Individual work

5 138 54 84

Purpose of the course unit: programme competences to be developed

Purpose of the course unit:
to introduce the key concepts and principles of the functional programming paradigm, to solve problems and write

programs in a functional style (e.g., using polymorphism and higher-order functions), to teach students the Haskell

programming language.

Generic competences:

 Ability to apply the knowledge in practice. (GK2).

Subject competences:

 Analysis and applications of continuous and discrete mathematical structures (SK4).

 Programming (SK6).

Learning outcomes of the course unit:

students will be able to
Teaching and learning methods Assessment methods

 Understand the essential concepts of functional

programming (closure, functional composition,

recursion and induction, higher-order functions,

pattern matching, polymorphism, etc.)

Lectures, problem-oriented teaching, case

studies, literary reading, individual work,

tutorials, laboratory work.

Laboratory works

and results

presentation, written

exam (open, semi-

open and close-ended

questions and tasks).

 Build inductive user-defined data types and

write efficient functional programs for them

 Apply functional programming techniques to

solve various problems from real world

 Understand how imperative and functional

programming styles can support each other and

be used in combination in the current languages

(such as Python, Java, Scala)

Course content: breakdown of the topics

Contact hours Individual work: time and

assignments

L
ec

tu
re

s

T
u

to
ri

al
s

S
em

in
ar

s

P
ra

ct
ic

e

L
ab

o
ra

to
ry

 w
o

rk

P
ra

ct
ic

al
 t

ra
in

in
g

C
o

n
ta

ct
 h

o
u

rs

In
d

iv
id

u
a

l
w

o
rk

Assignments

Introduction to functional programming, its

history and background, overview of the current

functional languages, key functional

programming concepts, introduction to Haskell.

4 2

6 6

Individual reading.

Laboratory works.

Self-control tasks.

Defining functions: guards, pattern matching,

and recursion. The notions of closure and

functional rewriting. Functional composition and

currying. Higher-order functions.

6 3 9 18

Lists, strings and tuples. Higher-order functions

on lists: map, filter, list comprehension.

6 3 9 18

Types and polymorphism. Computation as

rewriting, lazy evaluation and infinite data

structures. Conditional polymorphism and type

classes.

4 2 6 14

Non-linear data structures. User-defined

datatypes. Functors and monads.

6 3 9 15

Functional programming features in the current

imperative languages (Python, Java, C#).

Synergy of functional and object-oriented

programming in Scala.

4 2 6 8

Applications of functional programming in real

world: parallel programming, the MapReduce

framework in cloud, data analytics.

2 1 3 5

Tutorials during the semester 4 4

Final exam (written) 2

Total 32 4 16 54 84

Assessment strategy Weig

ht %

Deadline Assessment criteria

Laboratory works 40 During the

semester

The students are given a number of exercises (tasks) to be

solved individually and/or in small groups for every practical

session. Solutions must be presented until the next practical

session. Separate exercises may be associated with different

maximal number of points, depending on their difficulty. At

least 50% of total points are required to take the exam.

Exam (written) 60 Exam session During the given time, the students solve a number of

theoretical and practical tasks.

Author Publishing

year

Title Number

or volume

Publisher or URL

Required reading

L. Laibinis 2016 Functional programming (electronic

course material, available online in the

VU Virtual Learning Environment)

 https://moodle.esec.vu.l

t/course/view.php?id=2

6467

M. Lipovača 2011 Learn You a Haskell for Greater Good!

(Available online)

 No Starch Press

Recommended reading

S. Thompson 2011 Haskell: The Craft of Functional

Programming

 Addison-Wesley

B. Sullivan et al. 2008 Real World Haskell (Available online) O’Reilly

