

Course unit title	Code
Algebra and Geometry	1BIOAG

Lecturer(s)	
Coordinating: Gintautas Bareikis	j

First cycle

Faculty Faculty of Mathematics and Informatics

Study cycle	Type of the course unit
	Privalomas

Mode of delivery	Period of implementation	Language of instruction		
Face-to-face	1 semester	Lithuanian		
		English		

Requisites	
Prerequisites: School program	
-	

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	132	64	72

Purpose of the course unit and programme competences to be developed							
Purpose of the course unit:							
To get acquainted with the basic knowledge of	f linear algebras and analytical	geometry.					
Generic competences:							
- Ability to apply the knowledge of math	nematics in practice (BK2)						
Specific competences:	-						
Understand and operate freely in basic mathem	atical methods of algebra and g	eometry, describing the					
quantitative properties of the simulated phenomena; and relationships. (DK4)							
Learning outcomes of the course unit	Teaching and learning methods	Assesment methods					
Have acquired knowledge in mathematical							
concepts and methods Check on of answers as							

concepts and methods		Check on of answers and
Construct mathematical arguments and	Lectures, seminars, analysis	solutions to the given
communicate them in a clear manner through	of exercises, consultations,	exercises, examinations of
written	discussions, tutorials	answers to the theoretical
To formulate and prove statements	D	questions of the mid-term
Expand own understanding, knowledge and	Problem sets at home	and final exams
skills working on problem sets independently		

	Contact work hours				ours	Self-study hours and tasks		
Temos	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Contact hours, total	Individual work	Assignments
1.Systems of linear equations. Gauss-Jordan	4			4		8	8	
method 2. Matrix algebra. Determinants. Matrix inverse. Matrix equations, inverse matricx method, Cramer's method, linear regression in matrix form	6			4		10	10	Studies of literature, example problem. The
3. Complex numbers. Properties of operations. Formula DeMoivre	4			4		8	10	set of exercises for
4. Introduction to analytical geometry. Line equation in plane. Plane and line equations in three dimensional space	4			4		8	10	at home.
5. Quadratic forms, positive and negative (semi-)definite matrices.	2			4		6	8	
6. Euclidean spaces. Subspaces. Gramm- Schmidt alghorithm	6			6		12	14	
7. Linear transformations and their matrices. Image, kernel. Eigenvalues. Linear transformations and their applications	6			6		12	12	
Total	32			32		64	72	

Assessment strategy	Weigh %	Deadline	Assesment criteria
Quizzes	20	Throughout the semester	Closed and open ended problems. The exhaustiveness of the answer and the ability to creatively apply mathematical methods will be given a bonus. The answers to the test questions are credited with points. The accumulated grade will be calculated according to the defined rule.
Colloquim	40	Middle of semester	Closed and open ended problems, with a focus on mathematical rigour and ability to apply mathematical tools in informatics. The exhaustiveness of the answer and the ability to creatively apply mathematical methods will be given a bonus. Rigour and depth of solutions.
Exam	40	End of semester	Exam consists of theory questions and exercises (from the second part of the course). Rigour and depth of solutions of the solutions will be evaluated.

Authors	Years of issue	Title	Number of the periodical volume or tome	Publishing place and publisher or web link
Required reading	ļ		volume of tome	<u> </u>
G. Bareikis	2020	Linear algebra and geometry	Lecture notes	In Moodle
H.Anton,C.Rorres	2005	Elementary Linear Algebra: Applications Version		John Wiley and Sons
Recommended read	ling			•
K.Matthews	2010	Elementary Linear Algebra. Lectures Notes		http://www.numbertheory.org/book
E.H.Connel	2004	Elements of Abstract and Linear Algebra		http://www.math.miami.edu/~ec/bo ok/