

COURSE UNIT (MODULE) DESCRIPTION

Course unit (mod	Code				
Introduction to Robotics					
Lecturer(s)	se unit (module) is delivered				
Coordinator: Aistis Raudys	Department of Software Engineer	ring			
	Institute of Computer Science				
Other(s): Vytautas Valaitis	Faculty of Mathematics and Infor	rmatics			
	Vilnius University				

Study cycle	Type of the course unit (module)			
$1^{\mathrm{st}}(\mathrm{BA})$	Compulsory			

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face	5, 7. semester	English

Requirements for students					
Prerequisites: basic programming skills	Additional requirements (if any): none				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	137	62	75

Purpose of the course unit (module): programme competences to be developed

Purpose of the module: Robotics is an interdisciplinary field involving mechatronics, electronics, programming and data science. The aim of the module is to convey knowledge of modern robotics to students, to discuss interdisciplinary applications of robotics. Students will be able to explain hardware features and to integrate it with software. It also aims to develop students' ability to evaluate the reliability of scientific results, to understand the significance of scientific information in decision-making.

Generic competences:

- Analyze and systematize information (BK1).
- Put knowledge into practice (BK2).
- Organize and plan work individually and in groups (BC3).

Specific competences:

- Electronics Fundamentals (DK5).
- Programming Basics for Microcontrollers (DK6).
- Fundamentals of Sensor Systems (DK7).
- Fundamentals of Electromechanics (DK9).
- Principles of Data Processing and Artificial Intelligence (DK10).

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Understand the principles of robotics: how sensors, moving parts, and other devices interact with them.	Problem-based teaching, case study, independent reading of literature	Written exam
Understand the principles of how microcontrollers and devices based on them work.	Problem-based teaching, discussions, independent reading of literature	Written exam, homework

Understand how sensors work and get to know the most common ones.	Problem-based teaching, laboratory works, independent reading of literature	Written exam, homework project work.
Understand and know how to control moving devices, various types of motors and solenoids.	Problem-based teaching, laboratory works, independent reading of literature	Written exam, homework project work.

	Contact hours					Self-study work: time and assignments			
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work nlacement	Contact hours	Self-study hours	Assignments
1. Microcontrollers and microcomputers, their specifics and differences	2				2		4	5	Write code for easy task
2. Linear power circuits, their elements and processes taking place in them.	2				2		4	5	Creating a simple circuit
3. Non-linear electrical circuits, their elements, as follows methods of circuit analysis, application	2				2		4	5	Create nonlinear circuit
4. Sensors, perception of the surrounding world	2				2		4	5	Use two or more sensors
5. Digital-to-analogue conversion: PWM, ADC, DAC	2				2		4	5	Programmed PWM
6. Programming of microcontrollers	2				2		4	5	Program a complex task
7. Data communication, signals, media, transmission equipment, protocols are used in robotics.	2				2		4	5	Transmit data in at least 2 ways
8. Electric motors, steppers, moving parts	2				2		4	5	To create a moving device
9. Motor and step controllers, servo motors	2				2		4	5	Use the widget
10. Gyro, accelerometers, compasses	2				2		4	5	Use a gyroscope
11. Cameras, LED lights	2				2		4	5	Use the camera
12. Screens, data output	2				2		4	5	Output data in textual and graphical form
13. Linear and pulsed power supplies	2				2		4	5	Create a simple power supply source
14. Virtual robotics environments	2				2		4	5	Create a virtual gadget
15. Artificial Intelligence Methods in Robotics	2				2		4	5	Try the AI API
16. Exam							2		
Total	30	0	0	0	30	0	62	75	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Homework:	15%	Week 3	Judged by: completeness and quality of work.
microcontrollers			
Homework:	15%	Week 6	Judged by: completeness and quality of work.
Sensors			
Homework:	15%	Week 9	Judged by: completeness and quality of work.
Motors and Displays			
Project	15%	Week	Combine all aspects of project work into one work. Judged by: completeness and quality of work.
-		14	by: completeness and quanty of work.
Exam (written)	40%	At the	Answers to 4 questions from lecture material. Evaluation
		end of	according completeness and examples.
		the	
		semeste	
		r	

Author	Year of publica tion	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Aistis Raudys Vytautas Valaitis	2019	Lecture slides	-	http://wiki.raudys.com/doku. php?id=robotika2018:paskait os
Optional reading				
Horowitz and Hill	2015	The Art of Electronics 3rd Edition	ISBN-13: 978- 0521809269	Cambridge University Press
Brian Huang and Derek Runberg	2017	The Arduino Inventor's Guide	ISBN-13: 978- 1593276522	No Starch Press
Michael Margolis	2011	Arduino Cookbook	ISBN-13: 978- 1449313876	O'Reilly Media
Various Authors		Instructables.com, hackaday.io		