

## **COURSE UNIT DESCRIPTION**

| Course unit title | Code |
|-------------------|------|
| Chromatography    |      |
|                   |      |

## Annotation

Chromatography has been the technique of choice for many years to assess the chemical purity of drug substances and products and is widely used in the pharmaceutical industry, from research and development to quality control. This course examines in detail the theory of chromatographic methods used in pharmaceutical industry. The laboratory work develops the ability to select the most appropriate methods for the separation, identification and quantification of target analytes.

| Lecturer(s)                     | Department, Faculty                                |  |  |  |  |
|---------------------------------|----------------------------------------------------|--|--|--|--|
| Coordinating: dr. Vilius Poškus | Faculty of Chemistry and Geosciences, Institute of |  |  |  |  |
| Other                           | Chemistry Naugardukas str. 24, LT-03225 Vilnius    |  |  |  |  |
| Other:                          |                                                    |  |  |  |  |

 Study cycle
 Type of the course unit

 Second
 Mandatory

| Mode of delivery | Semester or period<br>when it is delivered | Language of instruction |
|------------------|--------------------------------------------|-------------------------|
| Face to face     | I semester                                 | Lithuanian/English      |

| Requisites                                                                                                                                                  |                              |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| <b>Prerequisites:</b> Main courses of analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, physical chemistry and biochemistry. | Co-requisites (if relevant): |  |  |  |  |  |  |

| Number of ECTS credits<br>allocated | Student's workload<br>(total) | Contact hours | Individual work |
|-------------------------------------|-------------------------------|---------------|-----------------|
| 5                                   | 135                           | 64            | 71              |

| Purpose of the co                                                                                                                                                    | ourse unit: programme competences       | to be developed    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|
| The purpose of the course is to develop<br>• knowledge and understanding in chro<br>• ability to perform research work relate<br>• critical and analytical thinking. | matographic techniques and their applic |                    |
| Learning outcomes of the course                                                                                                                                      | Teaching and learning methods           | Assessment methods |

| Ecanning outcomes of the course                                                                               | reaching and learning methods                                                           | Assessment methods                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| unit                                                                                                          |                                                                                         |                                                                                                                     |
| Students will be able to analyze,<br>systematize and critically evaluate<br>scientific information related to | Lectures, literature review<br>presentations, laboratory<br>works and textbook reading. | Intermediate assessment.<br>Assessment of presentation.<br>All laboratory works must<br>be done, laboratory reports |
| Students will be able to work in chemical laboratory safely.                                                  |                                                                                         | must be compiled. Safe work in the laboratory. Final exam.                                                          |
| Students will be able to understand<br>and explain the working principles of<br>chromatographic techniques.   |                                                                                         |                                                                                                                     |

| Students will be able to choose the<br>optimal chromatographic technique<br>for separation, identification and<br>quantification of pharmaceuticals. | echnique<br>n and |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Students will be able to plan and<br>competently perform analysis of<br>pharmaceuticals using modern<br>chromatographic techniques.                  | rsis of<br>dern   |
| Students will be able to analyze and<br>evaluate the data obtained by<br>chromatographic techniques.                                                 | by                |

|                                                                                                                                                                                                                                        | Contact hours |           |          |           |                 |                              |                         |                 | Individual work: time and assignments                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|-----------|-----------------|------------------------------|-------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course content: breakdown of the topics                                                                                                                                                                                                | Lectures      | Tutorials | Seminars | Workshops | Laboratory work | Internship/work<br>placement | Contact hours,<br>total | Individual work | Assignments                                                                                                                                      |  |
| 1. Introduction. Theoretical background.<br>Classification of chromatographic methods.<br>Intermolecular forces. Main characteristics:<br>retention, efficiency, resolution, selectivity.<br>Diffusion processes. Overloading effects. | 4             |           |          |           |                 |                              | 4                       | 6               | Textbook reading.                                                                                                                                |  |
| 2. Gas chromatography. Instrumentation. Packed<br>and capillary columns. Stationary phases.<br>Temperature programming modes.                                                                                                          | 2             |           |          |           | 8               |                              | 10                      | 12              | Textbook reading.<br>Getting ready for<br>laboratory work.<br>Preparation of<br>laboratory work<br>report.                                       |  |
| 3. Thin layer chromatography. Theory.<br>Instrumentation. Stationary phases. Solvents.<br>Detection techniques.                                                                                                                        | 2             |           |          |           |                 |                              | 2                       | 5               | Textbook reading.                                                                                                                                |  |
| 4. High performance liquid chromatography.<br>Instrumentation. Stationary phases. Solvents.<br>Separation modes: normal and reversed phase,<br>hydrophilic interaction, ion-exchange, ion-pairing,<br>size exclusion, affinity.        | 8             |           |          |           | 8               |                              | 16                      | 12              | Textbook reading.<br>Getting ready for<br>laboratory work.<br>Preparation of<br>laboratory work<br>report.                                       |  |
| 5. Chiral liquid chromatography. Chiral recognition mechanisms. Indirect and direct separation modes. Chiral selectors. Chiral stationary phases.                                                                                      | 6             |           |          |           |                 |                              | 6                       | 6               | Textbook reading.                                                                                                                                |  |
| 6. Capillary electrophoresis. Theory.<br>Instrumentation. Capillary zone electrophoresis.<br>Micellar electrokinetic chromatography. Capillary<br>gel electrophoresis.                                                                 | 4             |           |          |           |                 |                              | 4                       | 4               | Textbook reading.                                                                                                                                |  |
| 7. Preparation of pharmaceutical samples.<br>Solvent extraction. Solid phase extraction.<br>Supercritical fluid extraction. Derivatization.<br>Column switching techniques.                                                            | 4             |           |          |           | 8               |                              | 12                      | 14              | Textbook reading.<br>Getting ready for<br>laboratory work.<br>Preparation of<br>laboratory work<br>report. Getting<br>ready for<br>presentation. |  |
| 8. Practical considerations. Column selection and testing. Mobile phase selection. System suitability                                                                                                                                  | 2             |           |          |           | 8               |                              | 10                      | 12              | Textbook reading.<br>Getting ready for                                                                                                           |  |

| testing.<br>Determina | Calibration<br>tion of impurities | and<br>S. | quantification. |    |  |    |    |    | laboratory<br>Preparation<br>laboratory<br>report. | work.<br>of<br>work |
|-----------------------|-----------------------------------|-----------|-----------------|----|--|----|----|----|----------------------------------------------------|---------------------|
|                       |                                   |           | Total           | 32 |  | 32 | 64 | 71 |                                                    |                     |

| Assessment strategy     | Weight % | Deadline                                                      | Assessment criteria                                        |
|-------------------------|----------|---------------------------------------------------------------|------------------------------------------------------------|
| Laboratory work         | 10       | Every Safe work in the laboratory. Ability to get reliable re |                                                            |
|                         |          | week                                                          | laboratory works must be done, laboratory                  |
|                         |          |                                                               | reports must be compiled (max. mark 10).                   |
| Intermediate assessment | 15       | Once in                                                       | The test consists of 5-7 questions. The evaluation of the  |
|                         |          | semester                                                      | questions ranges from 0.5 to 1.5 points.                   |
|                         |          | (under                                                        | The maximum score for test is 10 points, which is 15       |
|                         |          | notice)                                                       | percent of final evaluation.                               |
| Literature review       | 10       | Presentati                                                    | Problem statement, coverage of content, critical analysis, |
|                         |          | on during                                                     | clarity of writing, references (max. mark 10).             |
|                         |          | semester                                                      |                                                            |
| Final exam              | 65       | During the                                                    | Open answer questions (10 in total. The evaluation of the  |
|                         |          | session                                                       | questions ranges from 0.5 to 1.5 points. Max. mark. 10).   |

| Author                                          | Publishi<br>ng year | Title                                                                                                      | Issue of a periodical or<br>volume of a<br>publication; pages | Publishing house or<br>internet site |  |  |  |  |  |  |
|-------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|
|                                                 | Required reading    |                                                                                                            |                                                               |                                      |  |  |  |  |  |  |
| A.Maruška, O.Kornyšova,<br>E.Machtejevas        | 2005                | Efektyviosios skysčių<br>chromatografijos<br>pagrindai                                                     |                                                               | Kaunas, VDU leidykla.                |  |  |  |  |  |  |
| S. Ahuja, M. W. Dong (Eds)                      | 2005                | Handbook of<br>Pharmaceutical<br>Analysis by HPLC                                                          |                                                               | London, Elsevier                     |  |  |  |  |  |  |
| V. R. Meyer                                     | 2010                | Practical High-<br>Performance Liquid<br>Chromatography                                                    | 5th edition                                                   | John Wiley & Sons                    |  |  |  |  |  |  |
|                                                 |                     | Recommended re                                                                                             | eading                                                        |                                      |  |  |  |  |  |  |
| L. R. Snyder,<br>J. J. Kirkland,<br>J. W. Dolan | 2010                | Introduction to<br>Modern Liquid<br>Chromatography,<br>3ed<br>edition                                      |                                                               | New Jersey, John Wiley<br>& Sons     |  |  |  |  |  |  |
| D. G. Watson                                    | 2017                | Pharmaceutical<br>Analysis, 4th<br>edition                                                                 |                                                               | Edinburgh, Elsevier                  |  |  |  |  |  |  |
| P. W. Carr,<br>D. R. Stoll                      | 2015                | Two-Dimensional<br>Liquid<br>Chromatography<br>Principles, Practical<br>Implementation and<br>Applications |                                                               | Germany, Agilent<br>Technologies     |  |  |  |  |  |  |