

Course description

Course unit (module) title				Code		
Selected Chapters of Analysis						
Lecturer (s)			Department where the course unit is delivered			
Prof. Rimas Norvaiša			Department of Mathematical Analysis			
			Faculty of Mathematics and Informatics			
		Naugarduko St. 24,	Naugarduko St. 24, LT-03225 Vilnius, Lithuania			
Study cycle				Type of course unit (module)		
Second				Compulsory		
Mode of delivery		Semester or period when the course		Language (s) of instruction		
	unit (module		e) is delivered			
Face-to-face		1 st semester (Fall)		Lithuanian, English		
Requirements for students						
Prerequisites: Calculus and basic knowledge of functional			Additional requirements (if any):			
analysis and differential equations			-			
Course (module) volume in	Total stu	udent's workload Contact h		ours	Self-study hours	
credits						
5		134	40		94	

Purpose of the course unit (module): programme competences to be developed							
In the course, new (comparing with bachelor course) abstract spaces will be introduced, deeper insight will be given to							
linear functionals and operators, and methods of inve	linear functionals and operators, and methods of investigation of nonlinear functions will be introduced. Students will be						
acquainted with solution of integral equations and diff	erential heat equation.						
Learning outcomes of the course unit (module)							
At the end of the course a student should:	methods	Assessment methods					
- Know the main facts about topological spaces;	Traditional lectures on						
- Know differentiation in normed spaces;	functional analysis.						
- Be able to solve integral equations;	Practical training: solving						
- Understand the heat equation;	problems that help to understand	Testing written even					
- Be able to study the literature on functional analysis and applications; continue progress in this area.	theory. Individual work: solving complimentary problems and studying the literature	resting, written exam					

		Contact hours		Individual work hours and assignments		
Content: breakdown of the topics	Lectures	Consultations	Practical training	Total contact hours	Individual work hours	Assignments

Linear, metric and normed spaces	4		1	5	10	
Topological spaces	3		1	4	12	
Linear functionals and operators	5		1	6	14	
Generalized functions	3		1	4	10	Homework: solving
Differentiation in normed spaces	4		1	5	12	problems for each topic
Fredholm-Riesz-Schauder theory	5		1	6	14	
Newton method for solving nonlinear equations	2		1	3	8	
Heat equation	2		1	3	8	
Test and exam		4		4	6	Preparation for the test and
						exam
Total	28	4	8	40	94	

Assessment strategy	Weight	Deadline	Assessment criteria
	%		
Test (written)	25	8-9 th week	Test consists of 2 theoretical questions and 2 problems from first
			two topics. Each question and problem is evaluated by points, the
			total sum of points is equal from 0 to 25.
Exam (written)	75	January	Exam consists of 4 theory questions and 6 exercises (of diverse
			difficulty). Two questions require complete proof of some
			theorems or propositions. Exam is evaluated from 0 to 75 points.
			The points obtained from the test and exam are added, and the
			maximal possible sum is 100 points. The final mark is given
			according to the following principle:
			10 - not less than 90 points
			9 – not less than 82 points
			8 – not less than 75 points
			7 – not less than 65 points
			6 – not less than 55 points
			5 - not less than 45 points
			Students who collected fewer than 45 points get unsatisfactory
			mark (1 -4)

Author	Year of publication	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsory reading				
V. Paulauskas, A. Račkauskas	2007	Funkcinė analizė (Functional Analysis)	Ι	Vilnius, publishing house "Vaistų žinios"
V. Paulauskas, A. Račkauskas	2007	Funkcinė analizė (Functional Analysis)	II	Vilnius, publishing house "Vaistų žinios"
A. Račkauskas, A. Skūpas, A. Zabulionis	1989	Funkcinės analizės pratybų užduotys (Exercises of Functional Analysis)	Ι	Vilnius University Press
A. Račkauskas, A. Skūpas, A. Zabulionis	1992	Funkcinės analizės pratybų užduotys (Exercises of Functional Analysis)	II	Vilnius University Press
Optional reading	1		1	
W. Rudin	1991	Functional Analysis, 2nd ed.		McGraw-Hill, Singapore
M. Schechter	2002	Principles of Functional Analysis, 2nd Ed.		AMS, Providence, RI, USA
V. Paulauskas	2014	Selected chapters of		A manuscript (distributed for

mathematical analysis (lecture	students)
notes)	