Course unit title	Course unit code
INTRODUCTION TO PROGRAMMING	

Lecturer (s)	Department where course unit is delivered
Assoc Prof. Dr Vytautas Rudžionis	Kaunas Faculty
Assit. Prof. Dr Darius Diliijonas	Institute of Social Sciences and Applied Informatics
	Muitinės St 8, Kaunas LT-44280

Cycle	Level of course unit	Type of the course unit
First	1/1	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	1 semester 09-01 – 01-26	English

Prerequisites and corequisites						
Prerequisites: Corequisites:						
None						

Number of ECTS credits allocated	Student's workload	Contact work hours	Individual work hours
5	130	68	62

Purpose of the course unit: programme competences to be developed To acquire the ability properly apply main elements of programming languages, program structures, standard libraries; to be able to develop simple software applications, to able to identify strong and weak points of software code from security point of view.

Learning outcomes of course unit	Teaching and learning methods	Assessment methods
Will be able transform the given	Formal lecture,	Control assignment;
algorithm to software code, will be able	Practical exercise	independent software
to select best tools to implement the	Individual assignments	ogramming and
given algorithm	Active teachning	defending the applied
	methods (programming,	methods
	algorithm analysis)	

		Contact work hours						dividual work ours and tasks	
Course content: breakdown of the topics	Lectures	Consultations	Seminars	Practice classes	Laboratory	Practice	All contact work	Individual work	Tasks
Algorithm and programm. Relation between algorithm and programm	2				4		6	7	Software coding
Main elements of programming languages: variables, data types, expressions, operations, program control	2				4		6	7	Software coding

Main elements of programming languages (2): branching operators, condition operators, loops, switch operator	6			8		14	10	Software coding, preparation for control assignment
Arrays, strings, memory control	4			4		8	10	Software coding
Functions: sunroutines and functions, definition of functions, types of functions, structural programming	6			8		16	10	Software coding,
Standard libraries and functions: library, standard function, file processing, input.output operations, control of computer devices	12			4		16	10	Software coding, preparation for control assignment
Consultation		2				2	8	
Exam					2	2		
Total	32	2		32	2	68	62	

Assesment strategy	Comparative weight percentage	Date of examination	
I control assignment	15%	At predefined time	Student gets task and needs to write code to realize the task in one hour. Criteria taken into consideration: - accuracy of algorithm; - accuracy of code; - efficiency of code
II control assignment	15 %	At predefined time	Student gets task and needs to write code to realize the task in one hour. Criteria taken into consideration: - accuracy of algorithm; - accuracy of code; - efficiency of code
Individual assignment, defending the proposed solution ID	20%	At predefined time	Student receives freely formulated task and needs to develop algorithm for solution and to write program in selected programming language Graded in 1-10 mark scale. 10-9: Perfect and very good knowledge. Evaluation level. 90-100 % correct answers 8-7: Good knowledge and abilities could be several mistakes. Synthesis level. 70-89 % correct answers. 6-5: Average knowledge and abilities, there are errors. Analysis level. 50-69 % correct answers. 4-3: Knowledge and abilities below average, there are significant errors.

			Knowledge application level. 20-49 % correct answers. 2-1: Below minimum requirements. 0-19 % correct answers.
Exam -E	50 %	Assigned time during exam session	Test contains 10 questions of different complexity (varies from understanding of algorithm to knowledge of programming techniques). Graded in 1-10 mark scale. 10-9: Perfect and very good knowledge. Evaluation level. 90-100 % correct answers 8-7: Good knowledge and abilities, could be several mistakes. Synthesis level. 70-89 % correct answers. 6-5: Average knowledge and abilities, there are errors. Analysis level. 50-69 % correct answers. 4-3: Knowledge and abilities below average, there are significant errors. Knowledge application level. 20-49 % correct answers. 2-1: Below minimum requirements. 0-19 % correct answers.

Exam (E) include all materials (grade E = E if E >= 5, else E=0).

Final grade is calculated as follows:

Grade = Exam*0,5+I control assignment*0,15+ II control assignment*0.15+Individual assignment*0.2.

Author	Year	Title	Number of periodical publication or publication Volume	The place of publication and publisher or online link
Required read	ling			
Halterman R.	2015	Fundamental		https://tfetimes.com/wp-
		s of C++		content/uploads/2015/04/progcpp.pdf
		Programming		
Morin P.	2011	Open Data		https://tfetimes.com/wp-
		Structures		content/uploads/2015/04/ods-cpp.pdf
Backman K.	2012	Structured		https://tfetimes.com/wp-
		Programming		content/uploads/2015/04/structured-
		in C++		programming-with-c-plus-plus.pdf
Recommended	d readii	ng		
Felleisen M.,	2003	How to		Boston, MIT Press
Findley R.,		Design		
Flatt M.,		Programs		
Krishnamurti				
S				
Bentley J.	2000	Programming		New York, Addison-Wesley
		Pearls		