

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title						Code		
(Physical) Cosmology								
• ()	-		<pre>/ ` 1</pre>			• /		

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Thomas Gajdosik	Teorinės fizikos ir astronomijos institutas
Other(s):	

Study cycle	Type of the course unit (module)				
Master studies	lecture				

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Lecture	Fall / Spring semester	English

Requirements for students					
Prerequisites:	Additional requirements (if any):				
Special Relativity					

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	56	84

Purpose of the course unit (module): programme competences to be developed						
		ar a				
Students should learn the basic mathematical formulations that are necessary for Special and General Relativity, i.e. vector						
calculus and differential geometry. Based on that grou	nd work, the student should underst	and the mathematical formulation				
of the evolution of the universe from the earliest under	rstood time, the era following cosmi	ic inflation.				
Learning outcomes of the course unit (module) Teaching and learning Assessment methods						
methods						

	meenous	
Special Relativity and its astronomical relevance	Lecture and reading (self study)	home work, exam
General Relativity: General covariance, Riemannian	Lecture and reading (self study)	exam
geometry, and Einstein equations		
Vacuum solutions to Einstein equations	Lecture and reading (self study)	exam
(Schwarzschild, Reissner-Nordstroem, Kerr-		
Newman)		
Symmetric solutions (de Sitter, anti de Sitter,	Lecture and reading (self study)	home work, exam
FLRW) and their time evolution: Big Bang,		
Inflation, Cosmic Microwave Background		
Particle content of the Standard Model	Lecture and reading (self study)	home work, exam
Supersymmetry (SUSY)	Lecture and reading (self study)	exam
Dark Matter from SUSY, particle detection and	Lecture and reading (self study)	exam
Dark Matter Searches		

	Contact hours						Self-study work: time and assignments		
Content: breakdown of the topics	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments

1. Special Relativity introduction:	2	2			4	3	Repeating, reading
Invariants, Lorentz transformations [1, 2];						1	Homework 1 (1.9 %)
2. Special Relativity: general Lorentz	2	2			4	3	Repeating, reading
transformations and consequence for astronomical						3	Homework 2 (3.2 %)
observations: redshift, stellar aberration, relativistic							
beaming and the kinematic model of a Milne							
universe							
3. Mathematical background for differential	2	2			4	7	Repeating, reading
geometry: vectors, tensors, vector space, manifolds,						2	Homework 3 (2.5 %)
tangent and cotangent space, affine connection.							
exterior derivative. Lie derivative, and the metric.							
4 Differential Geometry: the concept of Riemannian	2	2			4	7	Repeating reading
geometry in a curved space-time: using the metric	-	-			-		repeating, reading
and the Levi-Civita connection I derive the Riemann							
tensor describing the curvature of space-time							
Orthonormal coordinates motivate the spin							
connection							
5 Applying Diamannian geometry allows the	2	2			1	7	Penasting reading
derivation of the Einstein equations by discussing the	2	2			-	· /	Repeating, reading
derivation of the Einstein equations by discussing the							
geodesic motion. Vacuum solutions to the Einstein							
equations: Schwarzschild, Reissner-Nordström,							
Kerr-Newman.						_	
6. Symmetric non-vacuum solutions of the Einstein	2	2			4	7	Repeating, reading
equations: flat, de Sitter and anti de Sitter space.						6	Homework 4 (8 %)
Freedman-Robertson-Walker-Lemaitre cosmological							
models together with their respective time							
evolutions.							
7. Hot Big Bang: Introducing the thermodynamic	2	2			4	7	Repeating, reading
description of particle densities that were formed in							
the beginning of our universe, the Boltzmann							
equation coupled to the Einstein equations to							
describe the dynamic expansion of the universe.							
8. Cosmological inflation: initial conditions and	2	2			4	7	Repeating, reading
arguments for the assumption of an inflationary era							
to explain the homogeneity and isotropy of the initial							
conditions that start the time evolution governed by							
the Boltzmann-Einstein equations. Introducing the							
concepts of fields describing particles allows a short							
overview over the Lagrangians that are used to build							
models for the inflationary epoch.							
9. Cosmic microwave background radiation as a well	2	2			4	7	Repeating, reading
measured consequence of today's cosmological							1 0, 0
model. Big Bang Nucleosynthesis (BBN) as another							
probe of the Big Bang.							
10. Special Relativity: the algebra of the Poincaré	2	2			4	4	Repeating, reading
group allows the introduction of spinors and the	-	_			-	2	Homework 5 (4.4 %)
understanding of particles						_	
11 The Standard Model: Particle content [9 - 19]	2	2			4	6	Repeating reading
An overview over the Standard Model (SM) and its	2	2			-	U	Repeating, reading
narticles							
12 Supersymmetry: the unique extension of the	2	2			1	1	Repeating reading
Poincaré algebra: allows the construction of a	2	2			-	-	Repeating, reading
supersymmetric field theory: the minimal extension							
of the SM (MSSM) offers a dark matter condidate							
12 Dark Motter arguments for particle dark metter	2	2		\vdash	1	3	Departing reading
13. Dark Watter, arguments for particle dark matter,		[∠]			-	5	Repeating, reading
particle detection in principle; dark matter detection							
14 Cravitational Waysa	2	2		\vdash	1	2	Doposting modine
14. Oravitational waves	2	2			4	2	Repeating, reading
riepanng me seminar presentation	20	20			=1	4	
Total	28	28			50	84	

Assessment strategy	Weight,%	Deadline	Assessment criteria
Participation in the lecture	14 %		Active participation
and discussion during the			
seminars			
Homeworks	20 %	As announced	Turning in the homework and correcting it
		in the syllabus:	
Seminar presentation	15 %		Giving a presentation
_			
Exam	51 %		Passing the written and the oral part

Author	Year of public ation	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading	- i		1	1
1. Davig Hogg	1997	Special Relativity		http://cosmo.nyu.edu/hogg/sr/ sr.pdf
Strongly suggested readin	g			
2. Sean M. Carroll	1997 2004	Lecture Notes on General Relativity; Spacetime and geometry: An introduction to general relativity		arXiv: gr-qc/9712019 San Francisco, USA: Addison- Wesley (2004) 513 p
Optional reading				•
3. B. F. Schutz,	1985	A First Course In General Relativity		Cambridge, Uk: Univ. Pr. (1985) 376p
4. C. W. Misner, K. S. Thorne and J. A. Wheeler	1973	Gravitation		San Francisco 1973, 1279p
5. T. P. Cheng	2010	Relativity, Gravitation, And Cosmology: A Basic Introduction		Oxford, UK: Univ. Pr. (2010) 435 p
6. P. J. E. Peebles	1993	Principles of physical cosmology		Princeton, USA: Univ. Pr. (1993) 718 p
7. D. H. Perkins	2003	Particle astrophysics		Oxford, UK: Univ. Pr. (2003) 256 p
8. S. Dodelson	2003	Modern cosmology		Amsterdam, Netherlands: Academic Pr. (2003) 440 p
9. Daniel Baumann	2022	Cosmology		Cambridge University Press, 2022, ISBN 978-1-108-93709- 2, 978-1-108-83807-8 doi:10.1017/9781108937092
Optional reading about pa	nrticle phy	sics:+	1	
10. David Griffiths	1987	Introduction to Elementary Particles		John Wiley & Sons, Inc.; ISBN 0-471-60386-4 (1987).
11. Particle Data Group	2014	The particle adventure:		http:// www.particleadventure.org/
12. A. Zee	2003	Quantum Field Theory in a Nutshell		Princeton University Press; ISBN 0-691-01019-6 (2003).
13. P. B. Pal	2010	Dirac, Majorana and Weyl fermions		arXiv:1006.1718 [hep-ph]
14. I. J. R. Aitchison and A. J. G. Hey	2013	Gauge theories in particle physics: A practical introduction. Vol. 1: From relativistic quantum mechanics to QED		Bristol, UK: IOP (2003) 406p
15. I. J. R. Aitchison and A. J. G. Hey	2014	Gauge theories in particle physics: A practical introduction. Vol. 2: Non- Abelian gauge theories: QCD and the electroweak theory		Bristol, UK: IOP (2004) 454 p

16. Warren Siegel	2017	Fields	http://arxiv.org/abs/hep-th/
_			9912205 or
			http://
			insti.physics.sunysb.edu/
			~siegel/Fields4.pdf
17. S. Weinberg	1995	The Quantum Theory of Fields,	Cambridge University Press;
		I and II,	ISBN 0-521-58555-4
18. S. Weinberg	2000	The Quantum Theory of Fields,	Cambridge University Press;
_		III	ISBN 0-521-66000-9